Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/56249
Título: Modularity as a means for complexity management in neural networks learning
Autores/as: Castillo Bolado, David Alejandro 
Guerra, Cayetano 
Hernández Tejera, Mario 
Clasificación UNESCO: 120304 Inteligencia artificial
Fecha de publicación: 2019
Publicación seriada: CEUR Workshop Proceedings 
Conferencia: 2019 AAAI Spring Symposium on Combining Machine Learning with Knowledge Engineering, AAAI-MAKE 2019 
Resumen: Training a Neural Network (NN) with lots of parameters orintricate architectures creates undesired phenomena that com-plicate the optimization process. To address this issue we pro-pose a first modular approach to NN design, wherein the NNis decomposed into a control module and several functionalmodules, implementing primitive operations. We illustratethe modular concept by comparing performances between amonolithic and a modular NN on a list sorting problem andshow the benefits in terms of training speed, training stabil-ity and maintainability. We also discuss some questions thatarise in modular NNs.
URI: http://hdl.handle.net/10553/56249
ISSN: 1613-0073
Fuente: CEUR Workshop Proceedings [ISSN 1613-0073], v. 2350, (Abril 2019)
Colección:Actas de congresos
miniatura
pdf
Adobe PDF (13,46 MB)
Vista completa

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.