Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/56249
Campo DC Valoridioma
dc.contributor.authorCastillo Bolado, David Alejandroen_US
dc.contributor.authorGuerra, Cayetanoen_US
dc.contributor.authorHernández Tejera, Marioen_US
dc.date.accessioned2019-07-26T11:40:27Z-
dc.date.available2019-07-26T11:40:27Z-
dc.date.issued2019en_US
dc.identifier.issn1613-0073en_US
dc.identifier.urihttp://hdl.handle.net/10553/56249-
dc.description.abstractTraining a Neural Network (NN) with lots of parameters orintricate architectures creates undesired phenomena that com-plicate the optimization process. To address this issue we pro-pose a first modular approach to NN design, wherein the NNis decomposed into a control module and several functionalmodules, implementing primitive operations. We illustratethe modular concept by comparing performances between amonolithic and a modular NN on a list sorting problem andshow the benefits in terms of training speed, training stabil-ity and maintainability. We also discuss some questions thatarise in modular NNs.en_US
dc.languageengen_US
dc.relation.ispartofCEUR Workshop Proceedingsen_US
dc.sourceCEUR Workshop Proceedings [ISSN 1613-0073], v. 2350, (Abril 2019)en_US
dc.subject120304 Inteligencia artificialen_US
dc.titleModularity as a means for complexity management in neural networks learningen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2019 AAAI Spring Symposium on Combining Machine Learning with Knowledge Engineering, AAAI-MAKE 2019en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.ulpgces
dc.contributor.buulpgcBU-INFen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-1381-2262-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameCastillo Bolado, David Alejandro-
crisitem.author.fullNameGuerra Artal, Cayetano-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
crisitem.event.eventsstartdate25-03-2019-
crisitem.event.eventsenddate27-03-2019-
Colección:Actas de congresos
miniatura
pdf
Adobe PDF (13,46 MB)
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.