Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/56249
Título: | Modularity as a means for complexity management in neural networks learning | Autores/as: | Castillo Bolado, David Alejandro Guerra, Cayetano Hernández Tejera, Mario |
Clasificación UNESCO: | 120304 Inteligencia artificial | Fecha de publicación: | 2019 | Publicación seriada: | CEUR Workshop Proceedings | Conferencia: | 2019 AAAI Spring Symposium on Combining Machine Learning with Knowledge Engineering, AAAI-MAKE 2019 | Resumen: | Training a Neural Network (NN) with lots of parameters orintricate architectures creates undesired phenomena that com-plicate the optimization process. To address this issue we pro-pose a first modular approach to NN design, wherein the NNis decomposed into a control module and several functionalmodules, implementing primitive operations. We illustratethe modular concept by comparing performances between amonolithic and a modular NN on a list sorting problem andshow the benefits in terms of training speed, training stabil-ity and maintainability. We also discuss some questions thatarise in modular NNs. | URI: | http://hdl.handle.net/10553/56249 | ISSN: | 1613-0073 | Fuente: | CEUR Workshop Proceedings [ISSN 1613-0073], v. 2350, (Abril 2019) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.