Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/55448
Título: | Supervised classification of fully PolSAR images using active contour models | Autores/as: | Santana Cedres, Daniel Elias Gómez Déniz, Luis Trujillo Pino, Agustín Rafael Alemán Flores, Miguel Deriche, Rachid Alvarez, Luis |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes 120601 Construcción de algoritmos 120602 Ecuaciones diferenciales 120326 Simulación |
Palabras clave: | Active contours Classification Polarimetric synthetic aperture radar (PolSAR) snakes Statistical learning |
Fecha de publicación: | 2019 | Publicación seriada: | IEEE Geoscience and Remote Sensing Letters | Resumen: | In this letter, we propose a supervised method for the classification of fully polarimetric synthetic aperture radar (PolSAR) images based on active contour models. We use an ``a priori'' estimation, obtained from training data, of the complex Wishart distributions of the different types of regions in the image (for instance, water, crops, grass, forest or urban). The information of the Wishart distributions is included in the active contour models to guide the level set evolution. We study the case of two classes and the case of three or more classes separately. We present some experimental results on the synthetic data and real PolSAR images to show the performance of the proposed model. The results are compared with other well-known supervised classification methods, and, for actual PolSAR data, our method shows an overall precision of 94.31% and a κ coefficient of 0.937. | URI: | http://hdl.handle.net/10553/55448 | ISSN: | 1545-598X | DOI: | 10.1109/LGRS.2019.2892524 | Fuente: | IEEE Geoscience and Remote Sensing Letters [ISSN 1545-598X], v. 16(7), p. 1165-1169 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.