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Abstract—In this paper we propose a supervised method
for the classification of Fully PolSAR (Polarimetric Synthetic
Aperture Radar) images based on active contour models. We
use an “a priori” estimation, obtained from training data, of the
complex Wishart distributions of the different types of regions
in the image (for instance, water, crops, grass, forest or urban).
The information of the Wishart distributions is included in the
active contour models to guide the level set evolution. We study
the case of 2 classes and the case of 3 or more classes separately.
We present some experimental results on synthetic data and
real PolSAR images to show the performance of the proposed
model. The results are compared to other well-known supervised
classification methods and, for actual PolSAR data, our method
shows an overall precision of 94.31% and a κ coefficient of 0.937.

Index Terms—Polarimetric synthetic aperture radar (PolSAR)
snakes, active contours, classification, statistical learning.

I. INTRODUCTION

FULLY PolSAR (Polarimetric synthetic aperture radar)
measures target reflectivity by using four polarization

combinations, which provides better scattering measures than
monopolarized SAR systems. Due to that, PolSAR is an
effective tool to monitor ground surface and to perform terrain
and land use classification [1], [2], [3].

Classification methods can be divided into unsupervised
methods and supervised methods. Although unsupervised ap-
proaches (automatic classification without the intervention of
a user) are desirable and strongly pursued [4], due to the
complexity of PolSAR data, most practical methods are either
semi-supervised or supervised. Supervised methods rely on the
use of a reduced set of labeled samples (training set), marked
by an expert and used to obtain some information and perform
the data classification. Some supervised methods for PolSAR
classification use statistical information from PolSAR data,
such as the Wishart classifier [2], or machine learning tech-
niques, such as support vector machines [5] or random forests
[6], showing, in general, excellent performances. Classification
by using deep neural convolution networks constitutes an
active area of research on supervised methods, providing
results for PolSAR classification comparable to state-of-the
art techniques [7].
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In this paper we address the problem of supervised PolSAR
image classification using active contour models. Although
some works using active contours have been published for
SAR and PolSAR data [8], they focus on image segmentation
and not on image classification.

The classical geodesic active contours [9] allow adjusting an
initial approximation of a contour to the most significant edges
in the surrounding region. Active contour models including
statistical information have also been proposed in [10], [11].
For each pixel in the image domain, the PolSAR image
provides a Hermitian positive matrix. Moreover, within each
class of the image (given by the type of region: water, crops,
grass, forest, urban, etc.), the Hermitian positive matrices
follow a complex Wishart distribution. Due to these special
characteristics of the PolSAR images, the extension of the
usual active contour models to PolSAR images is not trivial.
The main contribution of this paper is a new formulation of
the active contour model, adapted to the features of PolSAR
images, which includes estimations of the Wishart models in
each class obtained from training data.

The rest of the paper is organized in the following way:
in Section 2, we present a brief introduction to the Wishart
distribution used as statistical model of the PolSAR image
distribution, as well as a robust technique for the estimation
of the Wishart parameters of each class. In Section 3, we
introduce the active contour models proposed to perform a
supervised region classification. Section 4 shows some exper-
imental results on synthetic and real PolSAR images. Finally,
in Section 5, we present some conclusions.

II. THE COMPLEX WISHART DISTRIBUTION

A. Characterization

This section is based on the work by Nascimento et al. [12].
The polarimetric coherent information associates to each pixel,
and for each frequency of operation, a 2×2 complex matrix
with entries SVV, SVH, SHV, and SHH, where Sij is the
backscattered signal for the ith transmission and jth reception
linear polarization, i, j = H,V. Under the conditions of
reflection symmetry, SHV = SVH, and the scattering matrix
can be simplified as the three-component complex vector
s =

[
SVV

√
2SVH SHH

]>
, where > denotes vector

transposition. This random vector can be modeled by the zero-
mean multivariate complex Gaussian distribution [13].

Different targets are characterized by different variances. In
the area covered by each image pixel, L independent measure-
ments of the same target are obtained while processing the raw
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data. This quantity is the number of looks. These observations
are used to produce the “multilook sample covariance matrix”

Z =
1

L

L∑
i=1

sis
∗
i , (1)

where the superscript ∗ represents the complex conjugate
transpose of a vector, and si, i = 1, 2, . . . , L, are the L
scattering vectors. Assuming that these vectors are indepen-
dent, Z is a Hermitian positive definite matrix and follows
a scaled complex Wishart distribution [14]. Having Σ and
L as parameters, the scaled complex Wishart distribution is
characterized by the following probability density function

fZ(z; Σ, L) =
L3L|z|L−3

|Σ|LΓ3(L)
exp

(
− L tr(Σ−1z)

)
, (2)

where Γ3(L) = π3
∏2
i=0 Γ(L − i) for L ≥ 3, Γ(·) is the

gamma function, tr(·) represents the trace operator, |·| denotes
the determinant operator, Σ is the covariance matrix associated
to s, Σ = E

(
ss∗
)
, where E(·) is the expectation. The first

moment of Z satisfies E(Z) = Σ. We denote Z ∼ W(Σ, L)
to indicate that Z follows the complex Wishart distribution.
As observed in [15], this distribution is able to accommodate
an arbitrary number of polarimetric components.

B. Robust Supervised Parameter Estimation

We assume that the PolSAR image pixels can be separated
in Nc classes corresponding to different types of regions and
that the image values in such regions follow a Wishart distri-
bution W(Σm, L) with m = 1, .., Nc. We also assume that
the number of looks, L, is known “a priori” and is the same
for all classes. To estimate the covariance matrix Σm, we use
a supervised learning procedure. For each class, we manually
select a region of pixels belonging to the target class and we
assume that the PolSAR image values {Σ1

m,Σ
2
m, . . . ,Σ

Nm
m }

are random samples of W(Σm, L). Frery et al. [16] showed
that the ML estimator for Σm is a quantity that maximizes the
log-likelihood function associated to the Wishart distribution
given by the sample mean

Σ̂m
ML = Σm =

Σk=Nm

k=1 Σk
m

Nm
, (3)

so that using this approach we obtain an estimation of Σm.
In general, real PolSAR images are corrupted by speckle

noise, and the manually selected regions to compute the
class representative Σm include outliers which might have
a strong influence on the estimation. In this paper we propose
a technique to remove outliers in the estimation of Σm based
on the Kullback-Leibler (KL) stochastic distance given by:

dKL (Σ1,Σ2) = L

[
tr
(
Σ−1

1 Σ2 + Σ−1
2 Σ1

)
2

− 3

]
. (4)

First, we compute the mean, in the sense of the Kullback-
Leibler distance, of the sequence {Σ1

m,Σ
2
m, . . . ,Σ

Nm
m },

which is given by the expression

Σ̂m
KL =

√
B−1

m

[√√
BmAm

√
Bm

]√
B−1

m , (5)

where Am = Σm and Bm = (Σm)−1. Indeed, Wang et al.
showed in [17] that the above matrix satisfies

Σ̂m
KL = arg min

Σ

Σk=Nm

k=1 dKL
(
Σ,Σk

m

)
Nm

. (6)

Originally, they showed this result for real symmetric pos-
itive matrices, but we can easily check that it is also
true for complex Hermitian positive matrices. Next, to re-
move outliers, we compute the 90th percentile, P90, of
{dKL

(
Σ̂m

KL,Σ
k
m

)
}k=1,..,Nm

and we remove from the se-

quence any matrix Σk
m satisfying dKL

(
Σ̂m

KL,Σ
k
m

)
> 2P90.

Once the outliers have been removed, we recompute the
class representative Σ̂m

KL using equation (5). We repeat this
procedure iteratively until no more outliers are removed.
In other words, we stop the procedure when, for any k,
dKL

(
Σ̂m

KL,Σ
k
m

)
≤ 2P90 (figures about this procedure are

included in Table I).

III. ACTIVE CONTOUR MODELS

A. Two-Class Level Set Formulation

The classical formulation of the active contour technique
aims to adapt an initial contour, Γ0, in such a way that it
moves locally toward the highest gradients, but preserving a
certain degree of smoothness. Therefore, it usually consists of
two terms which compete to reach a balance between contrast
and regularity. The level set formulation of the geodesic active
contours (GAC) described in [9] is given by

∂u

∂t
= g (I) div

(
∇u
‖∇u‖

)
‖∇u‖+∇u · ∇g (I) , (7)

where Γt = ∂{(x, y) : u(t, x, y) > 0} is an implicit
representation of the evolution of the optimized contour, I
is the image on which the segmentation is performed and
g(.) acts as an edge stopping function which satisfies that
g(I)(x, y) is small in the pixels (x, y) where I(x, y) has a
high gradient magnitude. Usually, Γ0 is given as the boundary
of a set Ω0 (the initial segmentation) and u0(x, y) is chosen as
the signed distance function dΩ0

(x, y). In [18] the following
extension of this equation, including a histogram-based term,
is proposed in the context of medical image segmentation

∂u

∂t
= g(I)div

(
∇u
‖∇u‖

)
‖∇u‖+∇g(I)·∇u+αk(I) ‖∇u‖ ,

(8)

where α ≥ 0 is a parameter to balance the weight of the new
term. The forcing term k(I) includes statistical information
about the image intensity. In [19] a mathematical study of this
type of equation with a forcing term is presented.

To extend this active contour model to PolSAR images, we
have to adapt the edge stopping function g(I)(x, y) and the
forcing term k(I)(x, y). The structure tensor, [20], has been
extensively used to analyze the local behavior of scalar images.
To extend g(I)(x, y), we use the following generalization of
the structure tensor to PolSAR images introduced in [21]. First,
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for n,m ∈ {−h, 0, h} (where h is the interpixel distance) and
(x, y) an image point, we define

dn,mσ (x, y) = dKL(Iσ(x+ n, y +m), Iσ(x− n, y −m)), (9)

where Iσ represents the convolution of the original PolSAR
image with a Gaussian kernel Kσ . Then we define the gener-
alization of the structure tensor matrix as

Jρ(Iσ) ≡ Kρ ∗

( (
d1,0
σ

)2
sgn(s)d1,0

σ d0,1
σ

sgn(s)d1,0
σ d0,1

σ

(
d0,1
σ

)2
)

(10)

where s(x, y) = d1,1
σ (x, y) − d1,−1

σ (x, y) and sgn(.) is the
signum function. The maximum eigenvalue of this matrix
λmax(Jρ(Iσ))(x, y) measures the variability of the PolSAR
image in a neighborhood of the point (x, y). The main
advantage with respect to other extensions of the structure
tensor of vector-valued images is that the one we propose is
adapted to PolSAR images and uses the stochastic Kullback-
Leibler distance to measure the image variability. Next, we
define g(I) as

g(I)(x, y) =
1

1 + c · λmax(Jρ(Iσ))(x, y)
, (11)

where c ≥ 0.
To define the extension of the forcing term k(I) to PolSAR

images we use the estimation of the Wishart distribution
W(Σm, L) for each class m = 1, 2 and we define k(I) as

k(I)(x, y) = log

(
ε+ fZ(I(x, y); Σ1, L)

ε+ fZ(I(x, y); Σ2, L)

)
, (12)

where ε > 0 is introduced to avoid singularities in the above
expression in case fZ(I(x, y); Σ2, L) is close to zero. We
point out that, if, for a covariance matrix I(x, y), the Wishart
probability density function evaluated in I(x, y) is higher
for class 1 than for class 2, then k(I)(x, y) is positive, and
negative otherwise. Moreover, the higher the disparity between
both probabilities, the greater the magnitude of k, which means
that the ambiguity is lower. This function can be used to
guide the contour in such a way that it inflates or deflates
automatically toward the surrounding regions which are more
likely to be in the first region.

B. Multi-class Level Set Formulation
In the general case, we deal with Nc classes, and the

level set formulation is given by the vector-valued function
u(t, x, y) = {um(t, x, y)}m=1,..,Nc

. For any t ≥ 0, u(t, x, y)
generates a partition of the image domain Ω iff

Hu(t, x, y) ≡ 1−
Nc∑
m=1

H(um(t, x, y)) = 0 (13)

where H(.) is the Heaviside step function. In other words,
{um(t, x, y)} generates a partition of Ω iff, for any t ≥ 0
and (x, y) ∈ Ω, there exists a unique m0 ∈ {1, .., Nc} such
that um0(t, x, y) ≥ 0. The multi-class level formulation we
propose is given by the following differential equation system:

∂um

∂t
= g(I)div

(
∇um

‖∇um‖

)
‖∇um‖+∇g(I)∇um (14)

+ (α · km(I) + β ·Hu) ‖∇um‖ ,

where β ≥ 0. The edge stopping function g(I), given by
the generalization of the structure tensor, is the same for all
equations, and km(I) is a forcing term given by

k(I)m(x, y) = log

(
ε+ fZ(I(x, y); Σm, L)

ε+ supj 6=mfZ(I(x, y); Σj , L)

)
. (15)

The introduction of the function Hu in equation (15) creates
a dependence between all components of u(t, x, y). Indeed,
if Hu(t, x, y) < 0, more than one component is positive and
then all components tend to decrease until only one is positive
in the point. On the other hand, in the case Hu(t, x, y) > 0
for all components, all of them tend to increase until one of
the components um becomes positive. In [22], [23], similar
multi-class level set formulations are introduced for scalar and
vector-valued images. The initial guess um0 (x, y) is chosen as
the signed distance function dΩm

0
(x, y), where

Ωm0 = {(x, y) : k(I)m(x, y) ≥ 0}. (16)

Once the solution u(t, x, y) of the PDE system becomes
stable, we classify the points (x, y) of the image domain in
the following way:

(x, y) ∈ class m if ∀j 6= m um(t, x, y) ≥ uj(t, x, y). (17)

IV. RESULTS AND DISCUSSION

To validate our proposal, we performed experiments using
both synthetic and real PolSAR data. In both cases, ground-
truth images have been provided in order to assess the accu-
racy. The results were compared with well-known supervised
methods. For all the techniques included in the comparison,
the class representatives were computed by randomly selecting
50% of each ground-truth class, preserving the other half for
validation purposes.

Polarimetric synthetic data (phantom) of size 500 × 500
pixels were generated from samples belonging to actual Pol-
SAR data to have a ground truth to compare the results with.
The phantom has large homogeneous areas for classification
purposes and also several rectangles of different sizes to
evaluate the preservation of the edges (see Fig. 1).

(a) t = 0 (b) t = 240 (c) t = 800

Fig. 1. Illustration of a collection of contours and their evolution using the
active contour model (see video at this link )

Figure 1 shows different instants in the evolution of the
contours on the phantom image. From the initialization of the
contours as circles (Fig. 1(a)) until the end of the process (Fig.
1(c)), the contours tend to adjust to the different classes, until
their complete separation, preserving the edges in all the cases.
Quantitatively, and regarding the segmentation of two classes,

http://www.ctim.es/videos/PolSARSnakesPhantomEvolution.gif
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the method achieves an overall precision of 99.62%. Note that
these data have not been pre-filtered.

For the multi-class case, we carried out experiments with
real data. To this purpose, we have used a well-known 4-look
1024 × 750-pixel PolSAR image belonging to the region of
Flevoland in the Netherlands (available at ESA sample datasets
- Fig. 2(a)). The result of the edge stopping function with
λ = 5 is shown in Fig. 2(b). As observed, most of the contours
which define the different regions are highlighted, and hence,
correctly detected.

(a) Pauli representation (b) g(I)(x, y)

Fig. 2. Flevoland PolSAR image: (a) Pauli codification and (b) representation
of the edge stopping function g(I)(x, y) with λ = 5

As in the case of the phantom data a ground truth was
manually generated for the real sequence, partially based on
[24]. In Fig. 3, this ground truth is shown, including the 14
different classes which were labeled. It has been obtained by
applying the preprocessing step described in section II-B. This
ground truth was also used with the other compared methods.

Fig. 3. Ground truth provided for the real PolSAR image of Flevoland:
steam beans, bare soil, rapeseed, potatoes, beet, wheat B,
peas, wheat C, lucerne, grass, building, wheat A,
forest, and water

Since we are dealing with a multi-class scenario, instead of
initializing the contours by using circles, the pre-classification
result provided by the Wishart distribution is used to purvey an
initialization to guide the evolution of the multi-class level sets.
Although the proposed method does not include a despeckling
filter, the extended Lee filter [25] for covariance matrices was
used to reduce speckle noise from the input data provided to
the rest of the applied techniques, in order to perform a fair
comparison with our proposal, which includes a regularization
term.

Fig. 4 shows the classification by maximum likelihood
by using the Wishart distribution (Fig. 4(a)), the stochastic
Hellinger distance (Fig. 4(b)), K-means (Fig. 4(c)), and the
PolSAR active contours (Fig. 4(d)). As observed, the Wishart,
Hellinger and K-Means classifiers are not able to separate the
classes completely. They include small isolated areas labeled

(a) Wishart (b) Hellinger

(c) K-Means (d) PolSAR Active Contours

Fig. 4. Results of applying different classification techniques: (a) Wishart,
(b) Hellinger, (c) K-Means, and (d) PolSAR active contours

as belonging to other classes, in spite of the fact that a
despeckling filter has been used. In addition, some regions are
almost completely misclassified, as in the case of the rapeseed
or wheat B classes in the K-Means technique. The PolSAR
active contour approach is able to classify the data in a much
better way, showing uniform regions without small isolated
spots.

On the other hand, quantitative results for the different
classifiers are included in table I. Note that, in order to
obtain such percentages, only the pixels not included in the
computation of the representatives are considered. In each
row, the precision for the different classes is indicated and,
at the bottom of the table, the overall precision (OP) and
the kappa coefficient (κ) is included. As can be observed,
for most of the classes, the proposed method outperforms
the rest of the techniques, obtaining percentages over 90%.
Only in the case of bare soil, the obtained accuracy is lower
than in the other methods. In fact, it is quite natural that the
method performs comparatively worse for bare-soil because
the points inside areas with low crop density are likely to be
misclassified as bare soil. In the case of rapeseed, grass or
forest, the active contour approach obtains percentages which
are significantly higher than for the rest of the methods. The
proposed approach improves the overall precision of the other
methods by 10% to 25%. Regarding the kappa coefficient,
the value obtained by applying the active contours improves
notably the results provided by the Wishart, Hellinger, and K-
Means techniques. Although our approach is computationally
slower, the computational time is still reasonable and the
results are qualitatively and quantitatively superior.

V. CONCLUSION

A supervised method for Fully PolSAR classification based
on active contour models has been presented. Firstly, to
identify two classes, a formulation based on the geodesic
active contours, which includes an extension of this model

https://earth.esa.int/web/polsarpro/data-sources/sample-datasets
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TABLE I
COMPARATIVE RESULTS FOR FLEVOLAND POLSAR IMAGE

Classes Outliers Removing Methods (%)

Before After Wishart Hellinger K-Means PolSAR A.C.

Stem Beans 2320 1934 88.74 87.89 78.02 97.48
Bare Soil 9056 7941 93.54 95.27 90.07 86.60
Rapeseed 6376 5540 69.22 69.03 40.54 99.13
Potatoes 20621 17494 83.62 81.51 64.13 91.72

Beet 21442 17794 83.19 84.60 73.84 93.44
Wheat B 10283 9096 81.71 81.47 59.01 96.85

Peas 14883 13348 90.98 86.90 73.94 98.72
Wheat C 22863 20571 85.34 87.49 78.49 99.04
Lucerne 11248 10000 92.61 92.47 90.14 98.67

Grass 11954 10781 78.94 78.14 60.66 95.12
Building 11200 10097 90.79 82.86 67.01 92.05
Wheat A 20625 18708 82.65 79.58 67.24 86.35

Forest 23438 21364 86.13 84.00 72.97 98.89
Water 962 781 99.90 99.69 71.46 100.00

OP 83.57 82.72 68.41 94.31
κ 0.819 0.811 0.653 0.937

Time (sec) 62.99 71.36 27.32 237.78

to PolSAR images, has been introduced by redefining the
stopping function and the forcing term. Secondly, an extension
to multi-class classification is presented, were the Heaviside
step function is included to create a dependence between all
the components.

It is worth noting that the ground-truth data, widely used
and obtained from different sources, do not consider the
presence of outliers inside the labeled regions. In this regard,
a preprocessing step to remove them, based on the Kullback-
Leibler (KL) stochastic distance, has been proposed.

We have performed experiments on both, synthetic and real
data, in order to test the accuracy when detecting two or more
classes in PolSAR images. We have presented a comparison
with other well-known supervised techniques. Such techniques
are applied on filtered input images, in order to perform
a fair comparison with the active contours. Qualitatively,
the proposed approach obtains better results, by identifying
regions which are more uniform in comparison with the other
methods. Quantitatively, the application of this generalization
of the active contours to PolSAR images produces significantly
better results for all but one class, improving considerably the
overall precision and the κ coefficient as well.
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