Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55448
Título: Supervised classification of fully PolSAR images using active contour models
Autores/as: Santana Cedres, Daniel Elias 
Gómez Déniz, Luis 
Trujillo Pino, Agustín Rafael 
Alemán Flores, Miguel 
Deriche, Rachid
Alvarez, Luis 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Palabras clave: Active contours
Classification
Polarimetric synthetic aperture radar (PolSAR) snakes
Statistical learning
Fecha de publicación: 2019
Publicación seriada: IEEE Geoscience and Remote Sensing Letters 
Resumen: In this letter, we propose a supervised method for the classification of fully polarimetric synthetic aperture radar (PolSAR) images based on active contour models. We use an ``a priori'' estimation, obtained from training data, of the complex Wishart distributions of the different types of regions in the image (for instance, water, crops, grass, forest or urban). The information of the Wishart distributions is included in the active contour models to guide the level set evolution. We study the case of two classes and the case of three or more classes separately. We present some experimental results on the synthetic data and real PolSAR images to show the performance of the proposed model. The results are compared with other well-known supervised classification methods, and, for actual PolSAR data, our method shows an overall precision of 94.31% and a κ coefficient of 0.937.
URI: http://hdl.handle.net/10553/55448
ISSN: 1545-598X
DOI: 10.1109/LGRS.2019.2892524
Fuente: IEEE Geoscience and Remote Sensing Letters [ISSN 1545-598X], v. 16(7), p. 1165-1169
Colección:Artículos
pdf
Adobe PDF (2,21 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.