Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54978
Campo DC Valoridioma
dc.contributor.authorMeng, Zhaoyien_US
dc.contributor.authorSánchez, Javieren_US
dc.contributor.authorMorel, Jean Michelen_US
dc.contributor.authorBertozzi, Andrea L.en_US
dc.contributor.authorBrantingham, P. Jeffreyen_US
dc.date.accessioned2019-02-18T15:58:57Z-
dc.date.available2019-02-18T15:58:57Z-
dc.date.issued2018en_US
dc.identifier.issn1612-3786en_US
dc.identifier.urihttp://hdl.handle.net/10553/54978-
dc.description.abstractPortable cameras record dynamic first-person video footage and these videos contain information on the motion of the individual to whom the camera is mounted, defined as ego. We address the task of discovering ego-motion from the video itself, without other external calibration information. We investigate the use of similarity transformations between successive video frames to extract signals reflecting ego-motions and their frequencies. We use novel graph-based unsupervised and semi-supervised learning algorithms to segment the video frames into different ego-motion categories. Our results show very accurate results on both choreographed test videos and ego-motion videos provided by the Los Angeles Police Department.en_US
dc.languageengen_US
dc.relation.ispartofMathematics and Visualizationen_US
dc.sourceTai XC., Bae E., Lysaker M. (eds) Imaging, Vision and Learning Based on Optimization and PDEs. IVLOPDE 2016. Mathematics and Visualization. Springer, Chamen_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.titleEgo-motion classification for body-worn videosen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceInternational conference on Imaging, Vision and Learning Based on Optimization and PDEs, IVLOPDE 2016en_US
dc.identifier.doi10.1007/978-3-319-91274-5_10en_US
dc.identifier.scopus85057477586-
dc.contributor.authorscopusid57191746758-
dc.contributor.authorscopusid22735426600-
dc.contributor.authorscopusid57203072257-
dc.contributor.authorscopusid17134312900-
dc.contributor.authorscopusid15519359400-
dc.description.lastpage239en_US
dc.description.firstpage221en_US
dc.relation.volume0en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.conferenceidevents121644-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate29-08-2016-
crisitem.event.eventsenddate02-09-2016-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-8514-4350-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Pérez, Javier-
Colección:Actas de congresos
miniatura
pdf
Adobe PDF (3,81 MB)
Vista resumida

Visitas

191
actualizado el 23-nov-2024

Descargas

40
actualizado el 23-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.