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Abstract Portable cameras record dynamic first-person video footage and these
videos contain information on the motion of the individual to whom the camera
is mounted, defined as ego. We address the task of discovering ego-motion from the
video itself, without other external calibration information. We investigate the use
of similarity transformations between successive video frames to extract signals re-
flecting ego-motions and their frequencies. We use novel graph-based unsupervised
and semi-supervised learning algorithms to segment the video frames into differ-
ent ego-motion categories. Our results show very accurate results on both chore-
ographed test videos and ego-motion videos provided by the Los Angeles Police
Department.

1 Introduction

Affordable high-quality cameras for recording the first-person point-of-view experi-
ence, such as GoPro, are an increasingly common item in many aspects of people’s
lives. In this paper, we present a novel approach for segmenting or indexing body-
worn videos to different ego-motion categories.

Prior work on vision-based first-person human action analysis has focused a lot
on indoor activities, such as object recognition [23], hand gesture recognition [17]
[31], sign language recognition [28], context aware gesture recognition [27], hand
tracking [30] and detecting daily life activities [22]. Work with body-worn sensors
has also been shown to be effective for categorizing human actions and activities
[10] [26]. An unsupervised ego-action learning method was proposed in [13] for
sports videos. The basis of video indexing is to model the transformation between
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successive frames in the video. For the purpose of video indexing, several studies
have examined parametric models of frame transformation such as [6],[12]. Para-
metric models can be also used for video stabilization [25], and panorama construc-
tion [11].

In this paper, we propose an approach to classify different ego-motion categories.
We know that human motion observed from a first-person point-of-view can be cap-
tured by the global displacement between successive frames. This means that we
should be able to aggregate global motion and marginalize out local outlier motion.
We also know that motion involving the human gait has an inherent frequency com-
ponent. Therefore we can expect that frequency analysis can be used as an impor-
tant feature for ego-action categorization. We propose the use of a parametric model
for calculating the simple global representation of motion. This approach produces
a low dimensional representation of the motion of the ego. We then classify the
ego-motion using novel graph-based semi-supervised and unsupervised learning al-
gorithms. The algorithms are motivated by PDE-based image segmentation method
and achieve high performance in both accuracy and efficiency for different discrete
data sets.

We consider the ego-motion classification problem with both benchmark and
real-world data. Working with both types of data is critical because of the stark
differences in the degree of difficulty in the analysis of video data collected under
controlled and uncontrolled or “wild” conditions. Benchmark datasets with known
ground truth are developed under experimental conditions controlled by the re-
searcher. Such datasets attempt to simulate the types of behaviors that are of most
interest to the researcher. Simulations may favor positive outcomes because they
seek not only to limit sources of error linked to video image quality, but also en-
hance target behaviors of interest. For example, experimental protocols that seek
to enhance camera stability, ensure adequate lighting conditions, avoid obstructions
may all assist in the algorithmic task. Ensuring that experimental participants enact
well-defined or discrete transitions between different types of behavior, or exagger-
ate the differences between behavioral modes may favor accurate segmentation. We
draw on choreographed video collected under controlled circumstances to develop
our approach.

Videos not collected under controlled conditions may nevertheless be hand-
labeled by the researcher to produce a ground truth. Such videos may be subject
to many more quality challenges than simulated scenes. Actual behavior and condi-
tions as they exist on the ground are unforgiving. People in real-world settings may
not act in discrete, linear sequences, nor are they necessarily inclined to exaggerate
their different actions for easy detection. Ego-motions may also proceed so quickly
that they defy discrete recognition. We may also lack sufficient semantic categories
to capture the diversity of real-world behavior. Real-world video systems may also
not be state-of-the-art and therefore suffer from poor camera stability, low frame
rate, low resolution, poor color saturation and data collection errors (both human
and mechanical). All of these effects can drastically impact the ability of the re-
searcher to label video for ground truth, which introduces errors into algorithmic
methods. We draw on police body-worn video (BWV) to evaluate how our methods
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perform under challenging real-world conditions. Police BWV is typically shaky,
contains noise from low light conditions, poor color saturation and occlusions, and
represents diverse and often mixed motion routines.

The paper is organized as follows. In Section 2, we describe the method for
motion feature extraction for two successive frames. In Section 3, we investigate the
semi-supervised and unsupervised graph-based MBO algorithms for classification.
In Section 4, we elaborate on our experimental results using choreographed test
video and real-world video data. Section 5 concludes the paper.

2 Motion Features

We characterize motion in a video sequence using a set of features. The features
represent the relative movements of ego, the individual on whom the video camera
is mounted. The features depend on the estimation of parametric models between
successive frames and on the analysis of periodic signals of the motion through
characteristic frequencies. We illustrate our method of constructing the motion fea-
tures in Figure 1. In subsection 2.1, we discuss how to use the inverse compositional
algorithm to estimate the similarity transformation between successive frames. This
transformation is represented by four parameters tx, ty, a and b. In subsection 2.2,
we construct four of the features to be used for the video segmentation – horizontal
displacement (x), vertical displacement (y ), angle of rotation (r) and zoom (z) using
the similarity transformation. In addition, the characteristic frequencies of these four
signals are computed using the method discussed in subsection 2.3. In subsection
2.4, we combine the four movement features and four frequency features to obtain
the eight-dimensional feature vector for each transformation between two succes-
sive frames. It is this feature vector that will be used for the graph-based machine
learning method.

Fig. 1 The process of constructing the motion features for each two successive frames.
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2.1 Transformations between two Successive Frames

To compute the motion of the video sequence, we estimate the similarity transforma-
tions between consecutive frames using the inverse compositional algorithm [2, 1].
It is possible to use more general parametric motions, such as affinities or homogra-
phies. However, the calculation of these is more prone to errors when some camera
shake is present. In any case, we find that the four parameters of the similarity are
sufficient to characterize motion.

The inverse compositional algorithm is an improvement of the Lucas-Kanade
method [14, 1] for image registration. Its implementation in [24] includes the use of
robust error functions, which allows estimating the correct transformation even in
the presence of occlusions or multiple motions. Let I1(x) and I2(x) be two images,
with x = (x,y). Let p be the global displacement vector between the two images and
∆p be the incremental displacement vector at each iteration. Let x′(x;p,∆p) be the
correspondence map from the left to the right image, or equivalently two frames in a
video sequence, parameterized by p and the incremental refinement ∆p. The energy
model is given by

E(∆p) = ∑
x

ρ

(∣∣I2(x′(x;p))− I1(x′(x;∆p))
∣∣2
2 ;λ

)
, (1)

where ρ (·) is a function that gives less weight to large values of the argument, where
the difference in image intensities is big (e.g., ρ(s2,λ ) = 0.5s2/(s2 +λ 2)).

Minimizing the energy with respect to ∆p yields:

∆p = H−1
δ ∑

x
ρ
′ · (∇I1(x)J(x))T (I2(x′(x;p))− I1(x)

)
, (2)

with

Hδ =∑
x

ρ
′ · (∇I1(x)J(x))T

∇I1(x)J(x)

=

∑
x

ρ ′ · (I1,x(x)J(x))T I1,x(x)J(x) ∑
x

ρ ′ · (I1,x(x)J(x))T I1,y(x)J(x)

∑
x

ρ ′ · (I1,x(x)J(x))T I1,y(x)J(x) ∑
x

ρ ′ · (I1,y(x)J(x))T I1,y(x)J(x)

 , (3)

and ρ ′ := ρ ′
(
|I2(x′(x;p))− I1(x)|22 ;λ

)
. J(x;p) = ∂x′(x;p)

∂p is the Jacobian of the
transformation. Table 1 lists the similarity transformation and its Jacobian using the
parametrization proposed in [32].

The minimum of this energy provides the parameters of the transformation. To
reach a highly accurate solution, the algorithm uses an iterative process. It also in-
cludes a coarse-to-fine strategy for estimating large displacements. See [24] for fur-
ther details.
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Transform Parameters – p Matrix – H(p) Jacobian – J(x;p)

Similarity (tx, ty,a,b)

 1+a −b tx
b 1+a ty
0 0 1

 (
1 0 x −y
0 1 y x

)

Table 1 Similarity transformation and its Jacobian

2.2 Movement Signal

Simple motions, such as horizontal (x) and vertical (y) movements, zoom (z) and
rotation (r) information can be computed given the similarity. The procedure for
calculating the displacement of the central pixel is shown in Algorithm 1.

Algorithm 1: Calculate the displacement of the central pixel
Input : The similarity H, size of the frame nx and ny
Output: x,y
1: pm← (nx/2,ny/2,1)T {the center of the frame}
2: (p1, p2, p3)

T ←H ·pm {project the center point using the similarity }
3: (p1, p2, p3)

T ← (p1, p2, p3)
T /p3 {normalize by the third component}

4: x← p1−nx/2 {the horizontal movement}
5: y← p2−ny/2 {the vertical movement}
6: return x, y

Since the similarity includes the composition of a zoom and rotation matrices, it
is easy to obtain these coefficients from the parametrization of Table 1. In this case,
the rotation and zoom factor are calculated as

r = arctan
(

b
1+a

)
, z =

√
(1+a)2 +b2, (4)

respectively.
The signals from raw video footage may have abnormally large values. We filter

out these values in preprocessing. We replace the signal value by µ , where µ is the
mean of the signal sequence and σ is the standard derivation, if the signal value
is outside the (µ − 3σ ,µ + 3σ) region. The filtered signals can still be very noisy.
We use convolutions with a Gaussian function to smooth these signals, which is the
basic idea in video stabilization [25].

We use the QUAD video data set 1 to examine ego-motion signals. We discuss
the details of this data set in section 4.

1 The data set can be found at: http://www.cs.cmu.edu/~kkitani/datasets/
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The motion signals we calculate using Algorithm 1 and Equation (4) are shown
in Figure 2. The left column gives the raw data x, y, z and r and the right column the
corresponding filtered and smoothed data.

The periodic pattern correlates with the periodic actions in the QUAD video.
The large oscillation of x corresponds to ego turning left and right repeatedly. The
large oscillation of y corresponds to ego repeatedly looking up and looking down.
The four peaks in z correspond to ego walking and running, since the frames zoom
fast when the person is walking or running. The large oscillations of rotation r also
correlate with the movements of turning left, turning right, looking up and looking
down.

Fig. 2 The x, y, r and z signals. On the left, the original signals and, on the right, the corresponding
filtered and smoothed data.

2.3 Frequency Signal

Some ego-motions are periodic, such as jumping, walking and running. Periodic
motions have different characteristic frequencies. This observation leads us to in-
vestigate the frequencies of x, y, z and r using Fourier analysis. We use the short-
time Fourier transform (STFT) to determine the sinusoidal frequency and phase
content of local sections of a signal as it changes over time. In practice, the proce-
dure for computing STFTs is to use a sliding window of fixed length and compute
the Fourier transform as the window slides over the whole signal. We use the Hann
window here:
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w(n) = 0.5
(

1− cos(
2πn

N−1
)

)
. (5)

As shown in Figure 3, the Hann window is zero at the boundaries which reduces the
artifacts at the boundary. The STFT is defined by:

Fig. 3 The Hann window

ST FT x[n](m,ω) = X(m,ω) =
N

∑
n=0

x[n]w[n−m]e− jωn, (6)

where the length of the window is N and m indicates the window sampling rate.
The magnitude squared of the STFT yields the spectrogram of the function:

spectrogram{x[n]}(m,ω) = |X(m,ω)|2. (7)

We use a five-second window in our experiments. We show the spectrogram of
six different motions of the y signal in Figure 4. The frequency is very small when
ego repeatedly turns left and right. The 2 second period is almost the same as when
ego repeatedly looks up and down. Looking up and down causes a frequency at
0.6 Hz. The spectrogram of small steps and walking are very similar. The largest
frequency is at 7.8 Hz. When ego walks at 0.5 seconds per step, the frequency is 2
Hz. However, because the GoPro camera is head-mounted, the camera also has an
oscillation when ego is walking. This camera oscillation causes this observed high
frequencies. For jumping and running, the spectrogram gives accurate frequencies
at 2Hz and 3.4 Hz, respectively.

We select the characteristic frequency of the window, which is defined as:

fw =

{
fmax, if fmax > 3δ

0, otherwise
, (8)

where fmax is the frequency corresponding to the largest value in the spectrogram
and δ is the standard deviation of the spectrogram. The condition of being larger
than 3δ guarantees that the frequency picked is unlikely to be caused by noise.

In practice, we choose N to be 300 frames (5 seconds) and let the window moves
60 frames (1 second) each time. In this case, at each frame, there are 5 fws. We
choose the median of these fws to be the final frequency at the frame.

We apply this procedure with the four movement signals x, y, r, and z and get
four frequency signals fx, fy, fr and fz. In other words, in addition to four movement
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Fig. 4 Spectrogram of 6 kinds of motions

Fig. 5 The four characteristic frequencies f x, f y, f z, f r of the QUAD video.



Ego-motion Classification for Body-worn Videos 9

signals, each frame transition is also associated with four characteristic frequencies.
We compute these frequencies of the QUAD video and show their values in Figure
5. We can observe four periods in the frequencies which correlate with the action
periods in the video.

2.4 Equalization of Variance

We always force the variance of each signal to be 1 by forcing x to be x̄+ x−x̄
σ(x) , where

x̄ is the mean and σ(x) is the standard variation. In this way, each signal gives equal
contribution to the combined feature vector. Different weights can be considered to
be applied on different signals based on the importance of the signals.

After equalizing the variance of the 8 signals, we combine them into a final mo-
tion feature fmotion. It is an N× 8 matrix, where N is the number of frames in the
video. Each row represents the eight-dimensional feature vector of one frame and
we denote the feature vector of the ith frame to be Fi. In this way, we code the video
frames by their feature matrix fmotion:

fmotion = [x,y,r,z, fx, fy, fr, fz]. (9)

3 Classification Method

Once we have built the features fmotion of the video, we would like to infer a number
of ego-motion categories from the data. In this section, we explore graph-based
semi-supervised and unsupervised algorithms for video segmentation. We consider
each transformation between two successive frames as a node in a weighted graph
and classify them in different motion classes.

Recently, novel classification algorithms have been proposed [19] that are mo-
tivated by PDE-based image segmentation methods and are modified to apply to
discrete data sets. These algorithms improve both accuracy of the solution and ef-
ficiency of the computation and can be potentially faster in parallel than various
classification algorithms such as spectral clustering with K-means [35, 16]. The
OpenMP parallelization and optimization of the algorithms are discussed in [18]
with online demo and codes.

The novel classification algorithms consider each data point as a node in a
weighted graph. The similarity (weight) between two nodes i and j is given by
formula:

wi j = exp(−||Fi−Fj||22/τ), (10)

where Fi and Fj are feature vectors of nodes i and j according to (9), and τ is a pa-
rameter to be determined [7, 35]. We use the Euclidean distance here. To determine
the value of τ , we try different values and run the experiments on the validation data
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to choose the τ with the best accuracy. We use τ = 40 in this paper. More about how
to choose τ can be found in [4].

The classification problem is approached using ideas from graph-cuts [29]. Given
a weighted undirected graph, the goal is to find the minimum cut (measured by a
summation of the weights along the graph cut) for this problem. This is equivalent to
assigning a scalar or vector value ui to each ith data point and minimizing the graph
total variation (TV) ∑i j |ui − u j|wi j [33]. Instead of directly solving a graph-TV
minimization problem, the graph TV can be transformed to a graph-based Ginzburg-
Laudau (GL) functional [4]:

E(u) = ε < Lsu,u >+
1
ε

∑
i
(W (ui)) (11)

where W (u) is a double well potential, for example W (u) = 1
4 (u

2 − 1)2 in a bi-
nary partitioning and multi-well potential in k dimensions (same as the number
of classes). Ls is the normalized symmetric graph Laplacian which is defined as
L = I −D−

1
2 WD−

1
2 , where D is a diagonal matrix with diagonal elements di =

∑ j∈V w(i, j).
In the vanishing ε limit, GL recovers the graph TV functional [34]. Different

fidelity terms are added to the GL functional for semi-supervised and unsupervised
learning respectively. The GL energy for semi-supervised learning is:

E(u) = ε〈Lsu,u〉+
1
ε

∑
i

W (ui)+∑
i

µ

2
λ (xi)||ui− ûi||2L2

. (12)

The last term of Equation (12) is the regular L2 fit to known data with some
constant µ , while λ (x) takes the value of 1 on fidelity nodes, and 0 otherwise. The
variable û is the initial value for u with randomly chosen labels for non-fidelity data
points and the “ground truth” for the fidelity points.

The GL energy for unsupervised learning is:

E(u,cr) = ε〈Lsu,u〉+
1
ε

∑
i

W (ui)+µ

n̂

∑
r=1
〈|| f − cr||2,u?,r〉. (13)

In (13), the term || f −cr||2 denotes an N×1 vector (|| f (x1)−cr||2, ..., || f (xN)−
cr||2)T and the xi (i = 1, ...N) are the N pixels of the data set. In addition, the term
u?,r indicates the rth column of u; the vector u?,r is a N× 1 vector which contains
the probabilities of every node belonging to class r. The term n̂ is the number of
classes and is to be provided to the algorithm in advance. This problem is essentially
equivalent to the K-means method when µ approaches +∞.

The GL functional is minimized using gradient descent [15]. An alternative is
to directly minimize the GL functional using the MBO scheme [21], or a direct
compressed sensing method [20]. We use the MBO scheme in this paper in which
one alternates between solving the heat (diffusion) equation for u and thresholding
to maintain distinct class structure. Computation of the entire graph Laplacian is
prohibitive for large data sets so we use the Nyström extension to randomly sample
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the graph and compute a modest number of leading eigenvalues and eigenfunctions
of the graph Laplacian [8]. By projecting all vectors onto this sub-eigenspace, the
iteration step reduces to a simple coefficient update.

3.1 Semi-supervised and Unsupervised Algorithms

We outline here the semi-supervised and the unsupervised algorithms. For the semi-
supervised algorithm, the fidelity data (a small amount of “ground truth”) is known
and the remaining data needs to be classified according to the categories of the
fidelity. For the unsupervised algorithm, there is no prior knowledge of the data
labels. We use the Nyström extension algorithm beforehand for both algorithms
to calculate the eigenvalues and eigenvectors as the inputs. In practice, these two
algorithms converge very fast and give accurate classification results.

Algorithm 2: Semi-supervised Graph MBO Algorithm [21]

Data: Eigenvectors matrix Φ , eigenvalues {λk}M
k=1 and fidelity.

Result: u
1 Initialize u0, d0 = 0, a0 = ΦT ·u0;

2 while ||un+1−un||22
||un+1||22

< α = 0.0000001 do
3 a. Heat equation;
4 1). an+1

k = an
k · (1−dt ·λk)−dt ·dn

k ;
5 2). y = Φ ·an+1;
6 3). dn+1 = ΦT ·µ(y−u0),;
7 b. Thresholding;
8 un+1

i = er,r = argmax j yi;
9 c. Updating a;

10 an+1 = ΦT ·un+1

11 end
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Algorithm 3: Unsupervised Graph MBO Algorithm [9]

Data: data matrix f , eigenvector matrix Φ , eigenvalues {λk}N
k=1

Result: u
1 Initialize u0, a0 = ΦT ·u0;

2 while ||un+1−un||22
||un+1||22

< α = 0.0000001 do
3 a. Updating c;

4 cn+1
k =

< f ,un+1
k >

∑
N
i=1 uki

;

5 b. Heat equation;

6 1. a
n+ 1

2
k = an

k · (1−dt ·λk);
7 2. Calculating matrix P, where Pi, j = || fi− c j||22;

8 3. y = Φ ·an+ 1
2

k −dt ·µP;
9 c. Thresholding;

10 un+1
i = er,r = argmax j yi;

11 d. Updating a;
12 an+1 = ΦT ·un+1;
13 end

The K-means algorithm [16] for finding K clusters proceeds iteratively by first
choosing K centroids and then assigning each point to the cluster of the nearest
centroid. The centroid of each cluster is then recalculated and the iterations continue
until there is little change from one iteration to the next.

In both semi-supervised and unsupervised algorithms, we calculate the leading
eigenvalues and eigenvectors of the graph Laplacian using the Nyström method [8]
to accelerate the computation. This is achieved by calculating an eigendecomposi-
tion on a smaller system of size M << N and then expanding the results back up to
N dimensions. The computational complexity is almost O(N). We can set M << N
without any significant decrease in the accuracy of the solution.

Suppose Z = {Zk}N
k=1 is the whole set of nodes on the graph. By randomly se-

lecting a small subset X , we can partition Z as Z = X
⋃

Y , where X and Y are two
disjoint sets, X = {Zi}M

i=1 and Y = {Z j}N−M
j=1 and M << N. The weight matrix W

can be written as

W =

[
WXX WXY
WY X WYY

]
,

where WXX denotes the weights of nodes in set X , WXY denotes the weights between
set X and set Y , WY X = W T

XY and WYY denotes the weights of nodes in set Y . It can
be shown that the large matrix WYY can be approximated by WYY ≈WY XW−1

XX WXY ,
and the error is determined by how many of the rows of WXY span the rows of WYY .
We only need to compute WXX , WXY =W T

Y X , and it requires only (|X | · (|X |+ |Y |))
computations versus (|X |+ |Y |)2 when the whole matrix is used.
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4 Experimental Results

To evaluate the performance of our method we need both choreographed video
sequences to run controlled experiments and real-world videos to observe perfor-
mance of our method in naturalistic settings. It is easy to define the ground truth for
the choreographed videos since the motions of the person who takes the video are
both discrete, and well-defined. For example, looking left and right never coincides
with running. However, real-world body-worn video usually contains a combination
of different motions with noise and it is therefore harder to define a ground truth.

4.1 Choreographed Video

The first video we use is QUAD [13]. We show one frame of the QUAD video in
Figure 6. This video is 4 minutes and 10 seconds in length and has 60 frames per
second. It contains 9 ego-motions (stand still, turn left, turn right, look up, look
down, jump, step in place, walk and run). Ego used a head-mounted GoPro camera.
Ego performed the 9 actions in order and repeated them four times. The ground truth
is shown in the first row of Figure 7. The horizontal axis represents time and colors
represent different ego-motion categories. The order of the movements are standing
still, turning left and turning right repeatedly, looking up and looking down repeat-
edly, jumping, stepping, walking, running, turning left and then start the same series
of motions again for another three times. We compute the feature vector for each

Fig. 6 One frame of the QUAD video.

two successive frames as described in section 2. Then we use K-means, the unsu-
pervised graph MBO algorithm and the semi-supervised graph MBO algorithm for
the ego-motion classification. We use 10% known labels (evenly sampled) in the
semi-supervised graph MBO algorithm. The classification results of these three al-
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gorithms are shown in the 2nd, 3rd and 4th rows of Figure 7. For the K-means and
the unsupervised MBO algorithm, we ran the experiments several times and pick
the best results here. Depending on the initialization, these two algorithms can con-
verge to different local minima, which is common for most non-convex variational
methods. The K-means algorithm gives relatively good results, except that it does
not recognize the category of looking down and misclassifies some parts of run-
ning, jumping, small steps and walking. The unsupervised graph MBO algorithm
gives results similar to K-means. The semi-supervised graph MBO algorithm with
10% known labels gives very accurate results. The accuracy summary of these three
algorithms is shown in Table 2.

Table 2 Accuracy Summary of the QUAD data set

Accuracy Overall Average 1.Stand still 2.Turn left 3.Turn right 4.Look up

K-means 64.84% 61.79% 95.82% 72.26% 77.28% 73.24%
Unsupervised MBO 66.62% 67.59% 79.99% 76.82% 83.37% 69.41%
Semi-supervised MBO 89.14% 88.74% 87.90% 89.43% 92.80% 80.36%

Accuracy 5.Look down 6.Jump 7.Step 8.Walk 9.Run

K-means 0 83.29% 49.29% 36.66% 68.25%
Unsupervised MBO 77.82% 39.38% 43.54% 83.27% 54.68%
Semi-supervised MBO 84.59% 92.71% 93.98% 84.52% 92.38%

Fig. 7 Ego-motion classification results of the QUAD video. The 9 colors represent 9 different ego-
motion classes: standing still (dark blue), turning left (moderate blue), turning right (light blue),
looking up (dark green) and looking down (light green), jumping (bud green), stepping (aztec
gold), walking (orange), runing (yellow).

4.2 Real-world Body-worn Video

We also investigated real-world body-worn videos. We use a data set from the Los
Angeles Police Department. The videos are from police wearing chest-mounted
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cameras while patrolling areas of Los Angeles on foot. The videos record a wide
array of police activities from basic patrol through foot chases and arrest. Our ego-
motion classification results may be used in modeling the routine activities of police
and their interactions with the public.

Police BWV is not collected under controlled circumstances. Ego-motions may
evolve rapidly without clear or discrete transitions. Much body worn video is col-
lected at night impacting light and color saturation. The videos also have distortion
due to the use of a fish-eye lens. Since there has been very little formal analysis
of police BWV, there is a lack of appreciation for the diversity of police behavior
likely to be encountered (i.e., very limited semantic dictionaries). The ground-truth
is labeled by us without input from the police.

We show here the video segmentation result of one clip of police video. The
video is 8 minutes and 16 seconds in length, with 14991 frames in total. In the
video, police arrive at an apartment building, talk with some people in front of the
building, go upstairs, wait outside a room, enter and search the room, leave the room,
walk downstairs, and talk to several people outside the building. We define four ego-
motion categories in this video – standing (or very slow motions not easy to define),
walking, going upstairs, and going downstairs. The ground truth classification of
this video is shown in the first row of Figure 8. The dark blue segments represent
the category of standing or slow movements when the officer talks with others in
front of the building. It also contains actions when the officer enters the room. The
video of this period is very shaky and not easily defined as one motion category.
The light blue segment corresponds to the walking category. The green segment
corresponds to the police going upstairs and the yellow part is going downstairs.

We explore the same algorithms for the police body-worn video. We are not us-
ing the unsupervised graph MBO algorithm because the result is not consistent. The
results are shown in Figure 8. K-means captures the difference between going up-
stairs and downstairs. However, K-means frequently misclassifies walking and go-
ing downstairs. Some standing frames are classified as other motion categories. This
later result is reasonable since standing in this video combines some other move-
ments. Then we use the semi-supervised graph MBO algorithm with 10% known
labels on this piece of video. The segmentation results are shown in the third row
of Figure 8. It can be seen that the result is much better than K-means, and the four
categories are all captured almost correctly. The accuracy summary is shown in Ta-
ble 3. The overall accuracy of the semi-supervised graph MBO algorithm with 10%
known labels is 90.17%.

Table 3 Accuracy Summary of the police body-worn video data set

Accuracy Overall Average 1.Stand 2.Walk 3.Upstairs 4.Downstairs

K-means 63.62% 63.77% 68.91% 37.78% 91.84% 56.53%
Semi-supervised MBO 90.17% 74.09% 96.10% 82.12% 83.45% 34.71%
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Fig. 8 Ego-motion classification results of the police video. The 4 colors represent 4 different ego-
motion classes: standing or very slow motions and motions not easy to define (dark blue), walking
(light blue), going upstairs (green) and going downstairs (yellow).

5 Conclusion

In this paper, we investigate the task of discovering ego-motion categories from first-
person videos. We deal with this problem in two steps. The first step is comparing
two successive frames using the inverse compositional algorithm to extract signals
containing motion and motion frequency information. Then we use unsupervised
and semi-supervised clustering algorithms for classification. The semi-supervised
graph based methods are particularly accurate using only 10% training data. We
show promising results on both choreographed and real-world video data.

The potential for future advances in this area are significant particularly in rela-
tion to police body-worn video. At full deployment of body-worn video in 2018, the
Los Angeles Police Department is projected to collect 3.2 million individual videos
totaling more than 200K hours of total video feed per year. This represents both
a vast resource and a significant analytical challenge. The amount of data suggests
that the full array of ego-motions practiced by police might eventually be discovered
and subject to classification, moving us towards a realistic picture of the diversity of
police activities. There will clearly be no lack of training data with which to tackle
this problem. The same surfeit of video data is proving to be true in other domains
outside of policing. Recognition of the diversity of ego-motion in policing activity
may also lead to novel extensions of the methods into dyadic- and n-person motion
models. In the dyadic-motion case there is much to be learned. It is well known that
relative motion of individuals with respect to one another encodes fundamental so-
cial information [3]. For example, an individual running away from ego may encode
avoidance or fear, while an individual running directly towards ego may encode at-
traction and threat. More complex social interactions may be captured in n-person
motion models.

The challenges to achieving such outcomes with real-world video are also sig-
nificant. In the police body-worn video case, semi-supervised classification clearly
outperforms the unsupervised approach. Yet even a small fraction of fidelity points
(10% in the current method) is probably infeasible given the volumes of video arriv-
ing each day. Semi-supervised methods will therefore need to rely on as few fidelity
points as possible. However another approach is video labeling where activities seg-
mented in one video might be used as labels for semi-supervised segmentation in
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another video. This was demonstrated in [4, 5] for image labelling. It will also be
necessary to consider how generalizable methods are across real-world video ex-
amples. Ideally, a handful of videos might be exhaustively labeled for ground-truth
and these would then work across the growing set of videos. This is an empirical
questions that we can start addressing now with the recognition that new methods
may be needed to account for the variability of real-world video.

Finally, we also point out that body-worn video is but one sensor platform in
what is increasingly a multi-sensor world. It is worth investigating whether there is
an advantage to doing more with single sensors, or whether it is better to integrate
the signals from many independent sensors. For example, we can imagine doing
both ego-motion and scene topic classification from the same video sequence, or as
an alternative use accelerometers to capture ego-motion and matching these data to
scene classification from video. Importantly, the issues are not strictly technologi-
cal. Police body-worn video is treated as evidence and therefore is subject to all of
the evidence handling rules required by law. Each sensor implies a different packet
of physical of evidence that must be maintained and handled appropriately. Future
work will need to examine these sorts of tradeoffs in detail.
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