Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/54978
DC FieldValueLanguage
dc.contributor.authorMeng, Zhaoyien_US
dc.contributor.authorSánchez, Javieren_US
dc.contributor.authorMorel, Jean Michelen_US
dc.contributor.authorBertozzi, Andrea L.en_US
dc.contributor.authorBrantingham, P. Jeffreyen_US
dc.date.accessioned2019-02-18T15:58:57Z-
dc.date.available2019-02-18T15:58:57Z-
dc.date.issued2018en_US
dc.identifier.issn1612-3786en_US
dc.identifier.urihttp://hdl.handle.net/10553/54978-
dc.description.abstractPortable cameras record dynamic first-person video footage and these videos contain information on the motion of the individual to whom the camera is mounted, defined as ego. We address the task of discovering ego-motion from the video itself, without other external calibration information. We investigate the use of similarity transformations between successive video frames to extract signals reflecting ego-motions and their frequencies. We use novel graph-based unsupervised and semi-supervised learning algorithms to segment the video frames into different ego-motion categories. Our results show very accurate results on both choreographed test videos and ego-motion videos provided by the Los Angeles Police Department.en_US
dc.languageengen_US
dc.relation.ispartofMathematics and Visualizationen_US
dc.sourceTai XC., Bae E., Lysaker M. (eds) Imaging, Vision and Learning Based on Optimization and PDEs. IVLOPDE 2016. Mathematics and Visualization. Springer, Chamen_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.titleEgo-motion classification for body-worn videosen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceInternational conference on Imaging, Vision and Learning Based on Optimization and PDEs, IVLOPDE 2016en_US
dc.identifier.doi10.1007/978-3-319-91274-5_10en_US
dc.identifier.scopus85057477586-
dc.contributor.authorscopusid57191746758-
dc.contributor.authorscopusid22735426600-
dc.contributor.authorscopusid57203072257-
dc.contributor.authorscopusid17134312900-
dc.contributor.authorscopusid15519359400-
dc.description.lastpage239en_US
dc.description.firstpage221en_US
dc.relation.volume0en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.conferenceidevents121644-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate29-08-2016-
crisitem.event.eventsenddate02-09-2016-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-8514-4350-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Pérez, Javier-
Appears in Collections:Actas de congresos
Thumbnail
pdf
Adobe PDF (3,81 MB)
Show simple item record

Page view(s)

191
checked on Nov 23, 2024

Download(s)

40
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.