Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/54971
DC FieldValueLanguage
dc.contributor.authorMostafa, Sheikh Shanawaz-
dc.contributor.authorMendonça, Fábio-
dc.contributor.authorRavelo-García, Antonio-
dc.contributor.authorMorgado-Dias, Fernando-
dc.date.accessioned2019-02-18T15:57:13Z-
dc.date.available2019-02-18T15:57:13Z-
dc.date.issued2018-
dc.identifier.isbn9781538653463-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/54971-
dc.description.abstractThe cyclic alternating pattern can be seen as an electroencephalogram marker of sleep instability. This pattern consists of alternations between activation and quiescent phases. An automatic cyclic alternating pattern detection method is proposed, having the advantage, over other previously proposed methods, of being featureless. Therefore, there is no need to handcraft features and employ a feature selection procedure. A Deep Auto Encoder is used for automatic feature extraction and classification of the activation phases. A shallow Artificial Neural Network is then employed for cyclic alternating pattern classification using the output of the Deep Auto Encoder. These two-cascaded networks are connected by a memory buffer. Both networks are optimized using a heuristic approach and Kolmogorov's Mapping theorem. A public database with 14 subjects is used to test the methods. For the activation phase classification, a 2 seconds raw EEG is used as an input of the Deep Auto Encoder. For the cyclic alternating pattern classifier, the whole memory buffer is used as input. The accuracy of activation phase detection is 67.2% and the accuracy of cyclic alternating pattern detection is 61.5%.-
dc.languagespa-
dc.relation.ispartof13th APCA International Conference on Control and Soft Computing, CONTROLO 2018 - Proceedings-
dc.source13th APCA International Conference on Control and Soft Computing, CONTROLO 2018 - Proceedings (8516418), p. 98-103-
dc.subject.otherAutomatic Method-
dc.subject.otherSleep-
dc.subject.otherCap-
dc.subject.otherClassification-
dc.subject.otherPhases-
dc.subject.otherAnn-
dc.subject.otherA Phase-
dc.subject.otherCap-
dc.subject.otherDeep Auto Encoder-
dc.subject.otherEeg-
dc.titleCombination of deep and shallow networks for cyclic alternating patterns detection-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeConferenceObject-
dc.relation.conference13th APCA International Conference on Control and Soft Computing, CONTROLO 2018-
dc.identifier.doi10.1109/CONTROLO.2018.8516418-
dc.identifier.scopus85057322696-
dc.identifier.isi000451286100017-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid57200602527-
dc.description.lastpage103-
dc.identifier.issue8516418-
dc.description.firstpage98-
dc.type2Actas de congresos-
dc.contributor.daisngid4069296-
dc.contributor.daisngid6442981-
dc.contributor.daisngid1986395-
dc.contributor.daisngid1189663-
dc.description.numberofpages6-
dc.identifier.eisbn978-1-5386-7223-5-
dc.utils.revisionNo-
dc.contributor.wosstandardWOS:Mostafa, SS-
dc.contributor.wosstandardWOS:Mendonca, F-
dc.contributor.wosstandardWOS:Ravelo-Garcia, A-
dc.contributor.wosstandardWOS:Morgado-Dias, F-
dc.identifier.conferenceidevents121643-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate04-06-2018-
crisitem.event.eventsenddate06-06-2018-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Actas de congresos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.