Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54971
Título: Combination of deep and shallow networks for cyclic alternating patterns detection
Autores/as: Mostafa, Sheikh Shanawaz
Mendonça, Fábio
Ravelo-García, Antonio 
Morgado-Dias, Fernando
Palabras clave: Automatic Method
Sleep
Cap
Classification
Phases, et al.
Fecha de publicación: 2018
Publicación seriada: 13th APCA International Conference on Control and Soft Computing, CONTROLO 2018 - Proceedings
Conferencia: 13th APCA International Conference on Control and Soft Computing, CONTROLO 2018 
Resumen: The cyclic alternating pattern can be seen as an electroencephalogram marker of sleep instability. This pattern consists of alternations between activation and quiescent phases. An automatic cyclic alternating pattern detection method is proposed, having the advantage, over other previously proposed methods, of being featureless. Therefore, there is no need to handcraft features and employ a feature selection procedure. A Deep Auto Encoder is used for automatic feature extraction and classification of the activation phases. A shallow Artificial Neural Network is then employed for cyclic alternating pattern classification using the output of the Deep Auto Encoder. These two-cascaded networks are connected by a memory buffer. Both networks are optimized using a heuristic approach and Kolmogorov's Mapping theorem. A public database with 14 subjects is used to test the methods. For the activation phase classification, a 2 seconds raw EEG is used as an input of the Deep Auto Encoder. For the cyclic alternating pattern classifier, the whole memory buffer is used as input. The accuracy of activation phase detection is 67.2% and the accuracy of cyclic alternating pattern detection is 61.5%.
URI: http://hdl.handle.net/10553/54971
ISBN: 9781538653463
DOI: 10.1109/CONTROLO.2018.8516418
Fuente: 13th APCA International Conference on Control and Soft Computing, CONTROLO 2018 - Proceedings (8516418), p. 98-103
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.