Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54971
Campo DC Valoridioma
dc.contributor.authorMostafa, Sheikh Shanawaz-
dc.contributor.authorMendonça, Fábio-
dc.contributor.authorRavelo-García, Antonio-
dc.contributor.authorMorgado-Dias, Fernando-
dc.date.accessioned2019-02-18T15:57:13Z-
dc.date.available2019-02-18T15:57:13Z-
dc.date.issued2018-
dc.identifier.isbn9781538653463-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/54971-
dc.description.abstractThe cyclic alternating pattern can be seen as an electroencephalogram marker of sleep instability. This pattern consists of alternations between activation and quiescent phases. An automatic cyclic alternating pattern detection method is proposed, having the advantage, over other previously proposed methods, of being featureless. Therefore, there is no need to handcraft features and employ a feature selection procedure. A Deep Auto Encoder is used for automatic feature extraction and classification of the activation phases. A shallow Artificial Neural Network is then employed for cyclic alternating pattern classification using the output of the Deep Auto Encoder. These two-cascaded networks are connected by a memory buffer. Both networks are optimized using a heuristic approach and Kolmogorov's Mapping theorem. A public database with 14 subjects is used to test the methods. For the activation phase classification, a 2 seconds raw EEG is used as an input of the Deep Auto Encoder. For the cyclic alternating pattern classifier, the whole memory buffer is used as input. The accuracy of activation phase detection is 67.2% and the accuracy of cyclic alternating pattern detection is 61.5%.-
dc.languagespa-
dc.relation.ispartof13th APCA International Conference on Control and Soft Computing, CONTROLO 2018 - Proceedings-
dc.source13th APCA International Conference on Control and Soft Computing, CONTROLO 2018 - Proceedings (8516418), p. 98-103-
dc.subject.otherAutomatic Method-
dc.subject.otherSleep-
dc.subject.otherCap-
dc.subject.otherClassification-
dc.subject.otherPhases-
dc.subject.otherAnn-
dc.subject.otherA Phase-
dc.subject.otherCap-
dc.subject.otherDeep Auto Encoder-
dc.subject.otherEeg-
dc.titleCombination of deep and shallow networks for cyclic alternating patterns detection-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeConferenceObject-
dc.relation.conference13th APCA International Conference on Control and Soft Computing, CONTROLO 2018-
dc.identifier.doi10.1109/CONTROLO.2018.8516418-
dc.identifier.scopus85057322696-
dc.identifier.isi000451286100017-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid57200602527-
dc.description.lastpage103-
dc.identifier.issue8516418-
dc.description.firstpage98-
dc.type2Actas de congresos-
dc.contributor.daisngid4069296-
dc.contributor.daisngid6442981-
dc.contributor.daisngid1986395-
dc.contributor.daisngid1189663-
dc.description.numberofpages6-
dc.identifier.eisbn978-1-5386-7223-5-
dc.utils.revisionNo-
dc.contributor.wosstandardWOS:Mostafa, SS-
dc.contributor.wosstandardWOS:Mendonca, F-
dc.contributor.wosstandardWOS:Ravelo-Garcia, A-
dc.contributor.wosstandardWOS:Morgado-Dias, F-
dc.identifier.conferenceidevents121643-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate04-06-2018-
crisitem.event.eventsenddate06-06-2018-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

15
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

11
actualizado el 25-feb-2024

Visitas

70
actualizado el 13-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.