Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54499
Título: Local refinement based on the 7-triangle longest-edge partition
Autores/as: Plaza, Ángel 
Márquez, Alberto
Moreno-González, Auxiliadora
Suárez, José P. 
Clasificación UNESCO: 120601 Construcción de algoritmos
Palabras clave: Local refinement
Longest-edge based algorithms
Skeleton
Fecha de publicación: 2009
Publicación seriada: Mathematics and Computers in Simulation 
Conferencia: 6th Meeting on Applied Scientific Computing and Tools (MASCOT06) 
Resumen: The triangle longest-edge bisection constitutes an efficient scheme for refining a mesh by reducing the obtuse triangles, since the largest interior angles are subdivided. In this paper we specifically introduce a new local refinement for triangulations based on the longest-edge trisection, the 7-triangle longest-edge (7T-LE) local refinement algorithm. Each triangle to be refined is subdivided in seven sub-triangles by determining its longest edge. The conformity of the new mesh is assured by an automatic point insertion criterion using the oriented 1-skeleton graph of the triangulation and three partial division patterns.
URI: http://hdl.handle.net/10553/54499
ISSN: 0378-4754
DOI: 10.1016/j.matcom.2009.01.009
Fuente: Mathematics and Computers in Simulation [ISSN 0378-4754], v. 79, p. 2444-2457
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.