Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/54499
Title: Local refinement based on the 7-triangle longest-edge partition
Authors: Plaza, Ángel 
Márquez, Alberto
Moreno-González, Auxiliadora
Suárez, José P. 
UNESCO Clasification: 120601 Construcción de algoritmos
Keywords: Local refinement
Longest-edge based algorithms
Skeleton
Issue Date: 2009
Journal: Mathematics and Computers in Simulation 
Conference: 6th Meeting on Applied Scientific Computing and Tools (MASCOT06) 
Abstract: The triangle longest-edge bisection constitutes an efficient scheme for refining a mesh by reducing the obtuse triangles, since the largest interior angles are subdivided. In this paper we specifically introduce a new local refinement for triangulations based on the longest-edge trisection, the 7-triangle longest-edge (7T-LE) local refinement algorithm. Each triangle to be refined is subdivided in seven sub-triangles by determining its longest edge. The conformity of the new mesh is assured by an automatic point insertion criterion using the oriented 1-skeleton graph of the triangulation and three partial division patterns.
URI: http://hdl.handle.net/10553/54499
ISSN: 0378-4754
DOI: 10.1016/j.matcom.2009.01.009
Source: Mathematics and Computers in Simulation [ISSN 0378-4754], v. 79, p. 2444-2457
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

6
checked on May 9, 2021

WEB OF SCIENCETM
Citations

5
checked on May 9, 2021

Page view(s)

64
checked on May 10, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.