Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/54499
Title: Local refinement based on the 7-triangle longest-edge partition
Authors: Plaza, Ángel 
Márquez, Alberto
Moreno-González, Auxiliadora
Suárez, José P. 
UNESCO Clasification: 120601 Construcción de algoritmos
Keywords: Local refinement
Longest-edge based algorithms
Skeleton
Issue Date: 2009
Journal: Mathematics and Computers in Simulation 
Conference: 6th Meeting on Applied Scientific Computing and Tools (MASCOT06) 
Abstract: The triangle longest-edge bisection constitutes an efficient scheme for refining a mesh by reducing the obtuse triangles, since the largest interior angles are subdivided. In this paper we specifically introduce a new local refinement for triangulations based on the longest-edge trisection, the 7-triangle longest-edge (7T-LE) local refinement algorithm. Each triangle to be refined is subdivided in seven sub-triangles by determining its longest edge. The conformity of the new mesh is assured by an automatic point insertion criterion using the oriented 1-skeleton graph of the triangulation and three partial division patterns.
URI: http://hdl.handle.net/10553/54499
ISSN: 0378-4754
DOI: 10.1016/j.matcom.2009.01.009
Source: Mathematics and Computers in Simulation [ISSN 0378-4754], v. 79, p. 2444-2457
Appears in Collections:Artículos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.