Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52554
Campo DC Valoridioma
dc.contributor.authorSarathi, M.P.en_US
dc.contributor.authorDutta, M.K.en_US
dc.contributor.authorSingh, A.en_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.date.accessioned2018-11-30T09:53:28Z-
dc.date.available2018-11-30T09:53:28Z-
dc.date.issued2016en_US
dc.identifier.issn1746-8094en_US
dc.identifier.urihttp://hdl.handle.net/10553/52554-
dc.description.abstractThe Optic disc (OD) nerve head region in general and OD center coordinates in particular form basis for study and analysis of various eye pathologies. The shape, contour and size of OD is vital in classification and grading of retinal diseases like glaucoma. There is a need to develop fast and efficient algorithms for large scale retinal disease screening. With this in mind, this paper present a novel framework for fast and fully automatic detection of OD and its accurate segmentation in digital fundus images. The methodology involves optic disc center localization followed by removal of vascular structure by accurate inpainting of blood vessels in the optic disc region. An adaptive threshold based Region Growing technique is then employed for reliable segmentation of fundus images. The proposed technique achieved significant results when tested on standard test databases like MESSIDOR and DRIVE with average overlapping ratio of 89% and 87%, respectively. Validation experiments were done on a labeled dataset containing healthy and pathological images obtained from a local eye hospital achieving an appreciable 91% average OD segmentation accuracy.en_US
dc.languageengen_US
dc.relation.ispartofBiomedical Signal Processing and Controlen_US
dc.sourceBiomedical Signal Processing and Control[ISSN 1746-8094],v. 25, p. 108-117en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherBlood vesselen_US
dc.subject.otherFundus imageen_US
dc.subject.otherIn-paintingen_US
dc.subject.otherOptic discen_US
dc.subject.otherRegion growingen_US
dc.subject.otherSpline interpolationen_US
dc.titleBlood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus imagesen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.bspc.2015.10.012
dc.identifier.scopus84950156175
dc.identifier.isi000369459100012
dc.contributor.authorscopusid56405511700
dc.contributor.authorscopusid35291803600
dc.contributor.authorscopusid55885045200
dc.contributor.authorscopusid6602376272
dc.description.lastpage117-
dc.description.firstpage108-
dc.relation.volume25-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid3303053
dc.contributor.daisngid35026383
dc.contributor.daisngid802071
dc.contributor.daisngid265761
dc.contributor.wosstandardWOS:Sarathi, MP
dc.contributor.wosstandardWOS:Dutta, MK
dc.contributor.wosstandardWOS:Singh, A
dc.contributor.wosstandardWOS:Travieso, CM
dc.date.coverdateMarzo 2016
dc.identifier.ulpgces
dc.description.sjr0,659
dc.description.jcr2,214
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

74
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

58
actualizado el 17-nov-2024

Visitas

46
actualizado el 10-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.