Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52554
Título: Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images
Autores/as: Sarathi, M.P.
Dutta, M.K.
Singh, A.
Travieso, Carlos M. 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Blood vessel
Fundus image
In-painting
Optic disc
Region growing, et al.
Fecha de publicación: 2016
Publicación seriada: Biomedical Signal Processing and Control 
Resumen: The Optic disc (OD) nerve head region in general and OD center coordinates in particular form basis for study and analysis of various eye pathologies. The shape, contour and size of OD is vital in classification and grading of retinal diseases like glaucoma. There is a need to develop fast and efficient algorithms for large scale retinal disease screening. With this in mind, this paper present a novel framework for fast and fully automatic detection of OD and its accurate segmentation in digital fundus images. The methodology involves optic disc center localization followed by removal of vascular structure by accurate inpainting of blood vessels in the optic disc region. An adaptive threshold based Region Growing technique is then employed for reliable segmentation of fundus images. The proposed technique achieved significant results when tested on standard test databases like MESSIDOR and DRIVE with average overlapping ratio of 89% and 87%, respectively. Validation experiments were done on a labeled dataset containing healthy and pathological images obtained from a local eye hospital achieving an appreciable 91% average OD segmentation accuracy.
URI: http://hdl.handle.net/10553/52554
ISSN: 1746-8094
DOI: 10.1016/j.bspc.2015.10.012
Fuente: Biomedical Signal Processing and Control[ISSN 1746-8094],v. 25, p. 108-117
Colección:Artículos
Vista completa

Citas SCOPUSTM   

74
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

58
actualizado el 17-nov-2024

Visitas

46
actualizado el 10-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.