Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52554
Título: | Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images | Autores/as: | Sarathi, M.P. Dutta, M.K. Singh, A. Travieso, Carlos M. |
Clasificación UNESCO: | 33 Ciencias tecnológicas | Palabras clave: | Blood vessel Fundus image In-painting Optic disc Region growing, et al. |
Fecha de publicación: | 2016 | Publicación seriada: | Biomedical Signal Processing and Control | Resumen: | The Optic disc (OD) nerve head region in general and OD center coordinates in particular form basis for study and analysis of various eye pathologies. The shape, contour and size of OD is vital in classification and grading of retinal diseases like glaucoma. There is a need to develop fast and efficient algorithms for large scale retinal disease screening. With this in mind, this paper present a novel framework for fast and fully automatic detection of OD and its accurate segmentation in digital fundus images. The methodology involves optic disc center localization followed by removal of vascular structure by accurate inpainting of blood vessels in the optic disc region. An adaptive threshold based Region Growing technique is then employed for reliable segmentation of fundus images. The proposed technique achieved significant results when tested on standard test databases like MESSIDOR and DRIVE with average overlapping ratio of 89% and 87%, respectively. Validation experiments were done on a labeled dataset containing healthy and pathological images obtained from a local eye hospital achieving an appreciable 91% average OD segmentation accuracy. | URI: | http://hdl.handle.net/10553/52554 | ISSN: | 1746-8094 | DOI: | 10.1016/j.bspc.2015.10.012 | Fuente: | Biomedical Signal Processing and Control[ISSN 1746-8094],v. 25, p. 108-117 |
Colección: | Artículos |
Citas SCOPUSTM
74
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
58
actualizado el 17-nov-2024
Visitas
46
actualizado el 10-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.