Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/51606
Campo DC Valoridioma
dc.contributor.authorPerdomo, Franciscoen_US
dc.contributor.authorPlaza, Ángelen_US
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-25T02:07:09Z-
dc.date.available2018-11-25T02:07:09Z-
dc.date.issued2013en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://hdl.handle.net/10553/51606-
dc.description.abstractFrom an initial triangle, three triangles are obtained joining the two equally spaced points of the longest-edge with the opposite vertex. This construction is the base of the longest-edge trisection method. Let Δ be an arbitrary triangle with minimum angle α. Let Δ′ be any triangle generated in the iterated application of the longest-edge trisection. Let α′ be the minimum angle of Δ′. Thus α′≥α/c with c=π/3arctan3/11 is proved in this paper. A region of the complex half-plane, endowed with the Poincare hyperbolic metric, is used as the space of triangular shapes. The metric properties of the piecewise-smooth complex dynamic defined by the longest-edge trisection are studied. This allows us to obtain the value c.en_US
dc.languageengen_US
dc.relationParticiones Triangulares y Algoritmos de Refinamiento.en_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.sourceApplied Mathematics and Computation [ISSN 0096-3003], v. 221, p. 424-432en_US
dc.subject120603 Análisis de erroresen_US
dc.subject.otherFinite element methoden_US
dc.subject.otherMesh qualityen_US
dc.subject.otherTriangle subdivisionen_US
dc.subject.otherTrisectionen_US
dc.titleProving the non-degeneracy of the longest-edge trisection by a space of triangular shapes with hyperbolic metricen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.amc.2013.06.075
dc.identifier.scopus84880913799-
dc.identifier.isi000324579400040-
dc.identifier.isi000324579400040-
dcterms.isPartOfApplied Mathematics And Computation-
dcterms.sourceApplied Mathematics And Computation[ISSN 0096-3003],v. 221, p. 424-432-
dc.contributor.authorscopusid55348970700-
dc.contributor.authorscopusid7006613647-
dc.description.lastpage432-
dc.description.firstpage424-
dc.relation.volume221-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid2597710-
dc.contributor.daisngid259483-
dc.identifier.investigatorRIDA-8210-2008-
dc.contributor.wosstandardWOS:Perdomo, F
dc.contributor.wosstandardWOS:Plaza, A
dc.date.coverdateAgosto 2013
dc.identifier.ulpgces
dc.description.sjr1,143
dc.description.jcr1,6
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorPlaza De La Hoz, Ángel-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePerdomo Peña, Francisco-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

6
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

7
actualizado el 15-dic-2024

Visitas

83
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.