Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/51606
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Perdomo, Francisco | en_US |
dc.contributor.author | Plaza, Ángel | en_US |
dc.contributor.other | PLAZA, ANGEL | - |
dc.date.accessioned | 2018-11-25T02:07:09Z | - |
dc.date.available | 2018-11-25T02:07:09Z | - |
dc.date.issued | 2013 | en_US |
dc.identifier.issn | 0096-3003 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/51606 | - |
dc.description.abstract | From an initial triangle, three triangles are obtained joining the two equally spaced points of the longest-edge with the opposite vertex. This construction is the base of the longest-edge trisection method. Let Δ be an arbitrary triangle with minimum angle α. Let Δ′ be any triangle generated in the iterated application of the longest-edge trisection. Let α′ be the minimum angle of Δ′. Thus α′≥α/c with c=π/3arctan3/11 is proved in this paper. A region of the complex half-plane, endowed with the Poincare hyperbolic metric, is used as the space of triangular shapes. The metric properties of the piecewise-smooth complex dynamic defined by the longest-edge trisection are studied. This allows us to obtain the value c. | en_US |
dc.language | eng | en_US |
dc.relation | Particiones Triangulares y Algoritmos de Refinamiento. | en_US |
dc.relation.ispartof | Applied Mathematics and Computation | en_US |
dc.source | Applied Mathematics and Computation [ISSN 0096-3003], v. 221, p. 424-432 | en_US |
dc.subject | 120603 Análisis de errores | en_US |
dc.subject.other | Finite element method | en_US |
dc.subject.other | Mesh quality | en_US |
dc.subject.other | Triangle subdivision | en_US |
dc.subject.other | Trisection | en_US |
dc.title | Proving the non-degeneracy of the longest-edge trisection by a space of triangular shapes with hyperbolic metric | en_US |
dc.type | info:eu-repo/semantics/Article | es |
dc.type | Article | es |
dc.identifier.doi | 10.1016/j.amc.2013.06.075 | |
dc.identifier.scopus | 84880913799 | - |
dc.identifier.isi | 000324579400040 | - |
dc.identifier.isi | 000324579400040 | - |
dcterms.isPartOf | Applied Mathematics And Computation | - |
dcterms.source | Applied Mathematics And Computation[ISSN 0096-3003],v. 221, p. 424-432 | - |
dc.contributor.authorscopusid | 55348970700 | - |
dc.contributor.authorscopusid | 7006613647 | - |
dc.description.lastpage | 432 | - |
dc.description.firstpage | 424 | - |
dc.relation.volume | 221 | - |
dc.investigacion | Ciencias | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 2597710 | - |
dc.contributor.daisngid | 259483 | - |
dc.identifier.investigatorRID | A-8210-2008 | - |
dc.contributor.wosstandard | WOS:Perdomo, F | |
dc.contributor.wosstandard | WOS:Plaza, A | |
dc.date.coverdate | Agosto 2013 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 1,143 | |
dc.description.jcr | 1,6 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.project.principalinvestigator | Plaza De La Hoz, Ángel | - |
crisitem.author.dept | GIR IUMA: Matemáticas, Gráficos y Computación | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.orcid | 0000-0002-5077-6531 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Perdomo Peña, Francisco | - |
crisitem.author.fullName | Plaza De La Hoz, Ángel | - |
Colección: | Artículos |
Citas SCOPUSTM
6
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
7
actualizado el 15-dic-2024
Visitas
83
actualizado el 15-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.