Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/51606
Título: | Proving the non-degeneracy of the longest-edge trisection by a space of triangular shapes with hyperbolic metric | Autores/as: | Perdomo, Francisco Plaza, Ángel |
Clasificación UNESCO: | 120603 Análisis de errores | Palabras clave: | Finite element method Mesh quality Triangle subdivision Trisection |
Fecha de publicación: | 2013 | Proyectos: | Particiones Triangulares y Algoritmos de Refinamiento. | Publicación seriada: | Applied Mathematics and Computation | Resumen: | From an initial triangle, three triangles are obtained joining the two equally spaced points of the longest-edge with the opposite vertex. This construction is the base of the longest-edge trisection method. Let Δ be an arbitrary triangle with minimum angle α. Let Δ′ be any triangle generated in the iterated application of the longest-edge trisection. Let α′ be the minimum angle of Δ′. Thus α′≥α/c with c=π/3arctan3/11 is proved in this paper. A region of the complex half-plane, endowed with the Poincare hyperbolic metric, is used as the space of triangular shapes. The metric properties of the piecewise-smooth complex dynamic defined by the longest-edge trisection are studied. This allows us to obtain the value c. | URI: | http://hdl.handle.net/10553/51606 | ISSN: | 0096-3003 | DOI: | 10.1016/j.amc.2013.06.075 | Fuente: | Applied Mathematics and Computation [ISSN 0096-3003], v. 221, p. 424-432 |
Colección: | Artículos |
Citas SCOPUSTM
6
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
7
actualizado el 17-nov-2024
Visitas
83
actualizado el 15-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.