Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/51606
DC FieldValueLanguage
dc.contributor.authorPerdomo, Franciscoen_US
dc.contributor.authorPlaza, Ángelen_US
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-25T02:07:09Z-
dc.date.available2018-11-25T02:07:09Z-
dc.date.issued2013en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://hdl.handle.net/10553/51606-
dc.description.abstractFrom an initial triangle, three triangles are obtained joining the two equally spaced points of the longest-edge with the opposite vertex. This construction is the base of the longest-edge trisection method. Let Δ be an arbitrary triangle with minimum angle α. Let Δ′ be any triangle generated in the iterated application of the longest-edge trisection. Let α′ be the minimum angle of Δ′. Thus α′≥α/c with c=π/3arctan3/11 is proved in this paper. A region of the complex half-plane, endowed with the Poincare hyperbolic metric, is used as the space of triangular shapes. The metric properties of the piecewise-smooth complex dynamic defined by the longest-edge trisection are studied. This allows us to obtain the value c.en_US
dc.languageengen_US
dc.relationParticiones Triangulares y Algoritmos de Refinamiento.en_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.sourceApplied Mathematics and Computation [ISSN 0096-3003], v. 221, p. 424-432en_US
dc.subject120603 Análisis de erroresen_US
dc.subject.otherFinite element methoden_US
dc.subject.otherMesh qualityen_US
dc.subject.otherTriangle subdivisionen_US
dc.subject.otherTrisectionen_US
dc.titleProving the non-degeneracy of the longest-edge trisection by a space of triangular shapes with hyperbolic metricen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.amc.2013.06.075
dc.identifier.scopus84880913799-
dc.identifier.isi000324579400040-
dc.identifier.isi000324579400040-
dcterms.isPartOfApplied Mathematics And Computation-
dcterms.sourceApplied Mathematics And Computation[ISSN 0096-3003],v. 221, p. 424-432-
dc.contributor.authorscopusid55348970700-
dc.contributor.authorscopusid7006613647-
dc.description.lastpage432-
dc.description.firstpage424-
dc.relation.volume221-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid2597710-
dc.contributor.daisngid259483-
dc.identifier.investigatorRIDA-8210-2008-
dc.contributor.wosstandardWOS:Perdomo, F
dc.contributor.wosstandardWOS:Plaza, A
dc.date.coverdateAgosto 2013
dc.identifier.ulpgces
dc.description.sjr1,143
dc.description.jcr1,6
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorPlaza De La Hoz, Ángel-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePerdomo Peña, Francisco-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 17, 2024

Page view(s)

83
checked on Jun 15, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.