Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/50540
DC FieldValueLanguage
dc.contributor.authorBen Abdallah, Mariemen_US
dc.contributor.authorMalek, Jiheneen_US
dc.contributor.authorTourki, Racheden_US
dc.contributor.authorMonreal, Julio Esclarinen_US
dc.contributor.authorKrissian, Karlen_US
dc.date.accessioned2018-11-24T16:50:18Z-
dc.date.available2018-11-24T16:50:18Z-
dc.date.issued2013en_US
dc.identifier.isbn978-1-4673-6459-1en_US
dc.identifier.isbn978-1-4673-6457-7-
dc.identifier.isbn978-1-4673-6458-4-
dc.identifier.urihttp://hdl.handle.net/10553/50540-
dc.description.abstractFor several years, a lot of studies have been done on image analysis and image understanding. In medical imaging, the retinal images are usually corrupted by noise in its acquisition or transmission. There are various sources of noise inherent in the use of CCD's (Charge Coupled Device) and other external effects such as space radiation (cosmic rays) can have negative effects on the obtained data. In the context of retinal image denoising, most of algorithms assumes the noise is additive and independent of the RGB image data, and is also a Gaussian sample. However, the type and level of the noise generated by digital cameras are unknown if we don't have enough informations about the sensor and circuitry of a digital camera. Therefore, these approaches cannot effectively recover the ”true” signal (or its best approximation) from these noisy acquired observations. Thus, modeling noise in retinal images is an important and huge step before any processing task. The purpose of this paper is to explore CCD's and understand an algorithm for estimating the noise model in fundus image.en_US
dc.languageengen_US
dc.source2013 10th International Multi-Conference on Systems, Signals and Devices, SSD 2013 (6564014)en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherCCD cameraen_US
dc.subject.otherFundus imagexen_US
dc.subject.otherNoise statisticsen_US
dc.subject.otherModeling noiseen_US
dc.titleAutomatic estimation of the noise model in fundus imagesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference2013 10th International Multi-Conference on Systems, Signals and Devices, SSD 2013
dc.identifier.doi10.1109/SSD.2013.6564014
dc.identifier.scopus84883129125-
dc.identifier.isi000326445400017-
dc.contributor.authorscopusid36450046200-
dc.contributor.authorscopusid16203443800-
dc.contributor.authorscopusid6603352243-
dc.contributor.authorscopusid7003781267-
dc.contributor.authorscopusid6602218913-
dc.identifier.issue6564014-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.date.coverdateSeptiembre 2013
dc.identifier.conferenceidevents121481
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate18-03-2013-
crisitem.event.eventsenddate21-03-2013-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.orcid0000-0003-1339-8700-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameEsclarín Monreal,Julio-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

12
checked on Nov 17, 2024

Page view(s)

110
checked on Sep 14, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.