Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/50540
Título: Automatic estimation of the noise model in fundus images
Autores/as: Ben Abdallah, Mariem
Malek, Jihene
Tourki, Rached
Monreal, Julio Esclarin 
Krissian, Karl
Clasificación UNESCO: 1203 Ciencia de los ordenadores
Palabras clave: CCD camera
Fundus imagex
Noise statistics
Modeling noise
Fecha de publicación: 2013
Conferencia: 2013 10th International Multi-Conference on Systems, Signals and Devices, SSD 2013 
Resumen: For several years, a lot of studies have been done on image analysis and image understanding. In medical imaging, the retinal images are usually corrupted by noise in its acquisition or transmission. There are various sources of noise inherent in the use of CCD's (Charge Coupled Device) and other external effects such as space radiation (cosmic rays) can have negative effects on the obtained data. In the context of retinal image denoising, most of algorithms assumes the noise is additive and independent of the RGB image data, and is also a Gaussian sample. However, the type and level of the noise generated by digital cameras are unknown if we don't have enough informations about the sensor and circuitry of a digital camera. Therefore, these approaches cannot effectively recover the ”true” signal (or its best approximation) from these noisy acquired observations. Thus, modeling noise in retinal images is an important and huge step before any processing task. The purpose of this paper is to explore CCD's and understand an algorithm for estimating the noise model in fundus image.
URI: http://hdl.handle.net/10553/50540
ISBN: 978-1-4673-6459-1
978-1-4673-6457-7
978-1-4673-6458-4
DOI: 10.1109/SSD.2013.6564014
Fuente: 2013 10th International Multi-Conference on Systems, Signals and Devices, SSD 2013 (6564014)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

12
actualizado el 17-nov-2024

Visitas

110
actualizado el 14-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.