Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/49162
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Plaza, A. | en_US |
dc.contributor.author | Falcón, S. | en_US |
dc.date.accessioned | 2018-11-24T04:44:11Z | - |
dc.date.available | 2018-11-24T04:44:11Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.issn | 0020-739X | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/49162 | - |
dc.description.abstract | In this article, we consider some generalizations of Fibonacci numbers. We consider k-Fibonacci numbers (that follow the recurrence rule F-k,F- n+2 = kF(k, n+1) + F-k,F- n), the (k, l)-Fibonacci numbers (that follow the recurrence rule F-k,F- n+2 = kF(k, n+1) + F-k,F- n), and the Fibonacci p-step numbers (F-p(n) = F-p(n - 1) + F-p(n - 2)+...+F-p(n-p), with n>p + 1, and p>2). Then we provide combinatorial interpretations of these numbers as square and domino tilings of n-boards, and by easy combinatorial arguments Honsberger identities for these Fibonacci-like numbers are given. While it is a straightforward task to prove these identities with induction, and also by arithmetical manipulations such as rearrangements, the approach used here is quite simple to follow and eventually reduces the proof to a counting problem. | en_US |
dc.language | eng | en_US |
dc.relation | Mtm2005-08441-C02-02. Particiones Triangulares y Algoritmos de Refinamiento | en_US |
dc.relation.ispartof | International Journal of Mathematical Education in Science and Technology | en_US |
dc.source | International Journal of Mathematical Education in Science and Technology [ISSN 0020-739X], v. 39 (6), p. 785-792 | en_US |
dc.subject | 120504 Teoría elemental de los números | en_US |
dc.subject.other | Combinatorial proof | en_US |
dc.subject.other | Generalized Fibonacci numbers | en_US |
dc.subject.other | Honsberger identities | en_US |
dc.title | Combinatorial proofs of Honsberger-type identities | en_US |
dc.type | info:eu-repo/semantics/Article | es |
dc.type | Article | es |
dc.identifier.doi | 10.1080/00207390801986916 | |
dc.identifier.scopus | 49649128595 | - |
dc.identifier.isi | 000213227300006 | - |
dc.contributor.authorscopusid | 7006613647 | - |
dc.contributor.authorscopusid | 6602997880 | - |
dc.identifier.eissn | 1464-5211 | - |
dc.description.lastpage | 792 | - |
dc.identifier.issue | 6 | - |
dc.description.firstpage | 785 | - |
dc.relation.volume | 39 | - |
dc.investigacion | Ciencias | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 259483 | |
dc.contributor.daisngid | 809328 | |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Plaza, A | |
dc.contributor.wosstandard | WOS:Falcon, S | |
dc.date.coverdate | Septiembre 2008 | |
dc.identifier.ulpgc | Sí | es |
dc.description.esci | ESCI | |
dc.description.erihplus | ERIH PLUS | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.project.principalinvestigator | Plaza De La Hoz, Ángel | - |
crisitem.author.dept | GIR IUMA: Matemáticas, Gráficos y Computación | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.orcid | 0000-0002-5077-6531 | - |
crisitem.author.orcid | 0000-0001-9917-3101 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Plaza De La Hoz, Ángel | - |
crisitem.author.fullName | Falcón Santana, Sergio | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.