Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/49162
Título: | Combinatorial proofs of Honsberger-type identities | Autores/as: | Plaza, A. Falcón, S. |
Clasificación UNESCO: | 120504 Teoría elemental de los números | Palabras clave: | Combinatorial proof Generalized Fibonacci numbers Honsberger identities |
Fecha de publicación: | 2008 | Proyectos: | Mtm2005-08441-C02-02. Particiones Triangulares y Algoritmos de Refinamiento | Publicación seriada: | International Journal of Mathematical Education in Science and Technology | Resumen: | In this article, we consider some generalizations of Fibonacci numbers. We consider k-Fibonacci numbers (that follow the recurrence rule F-k,F- n+2 = kF(k, n+1) + F-k,F- n), the (k, l)-Fibonacci numbers (that follow the recurrence rule F-k,F- n+2 = kF(k, n+1) + F-k,F- n), and the Fibonacci p-step numbers (F-p(n) = F-p(n - 1) + F-p(n - 2)+...+F-p(n-p), with n>p + 1, and p>2). Then we provide combinatorial interpretations of these numbers as square and domino tilings of n-boards, and by easy combinatorial arguments Honsberger identities for these Fibonacci-like numbers are given. While it is a straightforward task to prove these identities with induction, and also by arithmetical manipulations such as rearrangements, the approach used here is quite simple to follow and eventually reduces the proof to a counting problem. | URI: | http://hdl.handle.net/10553/49162 | ISSN: | 0020-739X | DOI: | 10.1080/00207390801986916 | Fuente: | International Journal of Mathematical Education in Science and Technology [ISSN 0020-739X], v. 39 (6), p. 785-792 |
Colección: | Artículos |
Citas SCOPUSTM
2
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 17-nov-2024
Visitas
128
actualizado el 05-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.