Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/49162
DC FieldValueLanguage
dc.contributor.authorPlaza, A.en_US
dc.contributor.authorFalcón, S.en_US
dc.date.accessioned2018-11-24T04:44:11Z-
dc.date.available2018-11-24T04:44:11Z-
dc.date.issued2008en_US
dc.identifier.issn0020-739Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/49162-
dc.description.abstractIn this article, we consider some generalizations of Fibonacci numbers. We consider k-Fibonacci numbers (that follow the recurrence rule F-k,F- n+2 = kF(k, n+1) + F-k,F- n), the (k, l)-Fibonacci numbers (that follow the recurrence rule F-k,F- n+2 = kF(k, n+1) + F-k,F- n), and the Fibonacci p-step numbers (F-p(n) = F-p(n - 1) + F-p(n - 2)+...+F-p(n-p), with n>p + 1, and p>2). Then we provide combinatorial interpretations of these numbers as square and domino tilings of n-boards, and by easy combinatorial arguments Honsberger identities for these Fibonacci-like numbers are given. While it is a straightforward task to prove these identities with induction, and also by arithmetical manipulations such as rearrangements, the approach used here is quite simple to follow and eventually reduces the proof to a counting problem.en_US
dc.languageengen_US
dc.relationMtm2005-08441-C02-02. Particiones Triangulares y Algoritmos de Refinamientoen_US
dc.relation.ispartofInternational Journal of Mathematical Education in Science and Technologyen_US
dc.sourceInternational Journal of Mathematical Education in Science and Technology [ISSN 0020-739X], v. 39 (6), p. 785-792en_US
dc.subject120504 Teoría elemental de los númerosen_US
dc.subject.otherCombinatorial proofen_US
dc.subject.otherGeneralized Fibonacci numbersen_US
dc.subject.otherHonsberger identitiesen_US
dc.titleCombinatorial proofs of Honsberger-type identitiesen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1080/00207390801986916
dc.identifier.scopus49649128595-
dc.identifier.isi000213227300006-
dc.contributor.authorscopusid7006613647-
dc.contributor.authorscopusid6602997880-
dc.identifier.eissn1464-5211-
dc.description.lastpage792-
dc.identifier.issue6-
dc.description.firstpage785-
dc.relation.volume39-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid259483
dc.contributor.daisngid809328
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Plaza, A
dc.contributor.wosstandardWOS:Falcon, S
dc.date.coverdateSeptiembre 2008
dc.identifier.ulpgces
dc.description.esciESCI
dc.description.erihplusERIH PLUS
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.project.principalinvestigatorPlaza De La Hoz, Ángel-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.orcid0000-0001-9917-3101-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
crisitem.author.fullNameFalcón Santana, Sergio-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.