Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48801
Título: Automated classification of exudates from digital fundus images
Autores/as: Rekhi, Ravitej Singh
Issac, Ashish
Dutta, Malay Kishore
Travieso, Carlos M. 
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Medical Imaging
Diabetic Macular Edema
Fundus image
Exudates
Anisotropic Diffusion, et al.
Fecha de publicación: 2017
Publicación seriada: 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings
Resumen: Diabetic Retinopathy and Diabetic Macular Edema are diseases that affect vision and eventually may lead to blindness. Early detection is a must to prevent the progression of the disease imploring the need for effective computer-aided diagnostic techniques. In the following research paper, a robust method has been proposed to segment hard exudates from digital, color fundus images using anisotropic diffusion and adaptive thresholding followed by a support vector machine for classification. The geometrical, shape and orientation features have been used to correctly classify the segmented objects as exudates or false pixels. The proposed technique has a high specificity and eliminates false positives correctly when applied across a wide range of images. The exudates segmented have a high degree of accuracy and no false positives are generated in case of non-diseased images. The proposed method has been tested on a total 189 images of the DIARETDB1 and MESSIDOR database and achieves an accuracy of 92.13% and 90% respectively. The proposed method can be used in the development for some computer aided technology for ocular diseases detection from fundus images.
URI: http://hdl.handle.net/10553/48801
ISBN: 9781538608500
DOI: 10.1109/IWOBI.2017.7985527
Fuente: 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings (7985527)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.