Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/48801
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rekhi, Ravitej Singh | en_US |
dc.contributor.author | Issac, Ashish | en_US |
dc.contributor.author | Dutta, Malay Kishore | en_US |
dc.contributor.author | Travieso, Carlos M. | en_US |
dc.date.accessioned | 2018-11-24T01:03:10Z | - |
dc.date.available | 2018-11-24T01:03:10Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.isbn | 9781538608500 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/48801 | - |
dc.description.abstract | Diabetic Retinopathy and Diabetic Macular Edema are diseases that affect vision and eventually may lead to blindness. Early detection is a must to prevent the progression of the disease imploring the need for effective computer-aided diagnostic techniques. In the following research paper, a robust method has been proposed to segment hard exudates from digital, color fundus images using anisotropic diffusion and adaptive thresholding followed by a support vector machine for classification. The geometrical, shape and orientation features have been used to correctly classify the segmented objects as exudates or false pixels. The proposed technique has a high specificity and eliminates false positives correctly when applied across a wide range of images. The exudates segmented have a high degree of accuracy and no false positives are generated in case of non-diseased images. The proposed method has been tested on a total 189 images of the DIARETDB1 and MESSIDOR database and achieves an accuracy of 92.13% and 90% respectively. The proposed method can be used in the development for some computer aided technology for ocular diseases detection from fundus images. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings | en_US |
dc.source | 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings (7985527) | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | Medical Imaging | en_US |
dc.subject.other | Diabetic Macular Edema | en_US |
dc.subject.other | Fundus image | en_US |
dc.subject.other | Exudates | en_US |
dc.subject.other | Anisotropic Diffusion | en_US |
dc.subject.other | SVM | en_US |
dc.title | Automated classification of exudates from digital fundus images | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.identifier.doi | 10.1109/IWOBI.2017.7985527 | en_US |
dc.identifier.scopus | 85028562476 | - |
dc.contributor.authorscopusid | 57195518313 | - |
dc.contributor.authorscopusid | 56800652200 | - |
dc.contributor.authorscopusid | 35291803600 | - |
dc.contributor.authorscopusid | 6602376272 | - |
dc.identifier.issue | 7985527 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | es |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Appears in Collections: | Actas de congresos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.