Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/48801
DC FieldValueLanguage
dc.contributor.authorRekhi, Ravitej Singhen_US
dc.contributor.authorIssac, Ashishen_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.date.accessioned2018-11-24T01:03:10Z-
dc.date.available2018-11-24T01:03:10Z-
dc.date.issued2017en_US
dc.identifier.isbn9781538608500en_US
dc.identifier.urihttp://hdl.handle.net/10553/48801-
dc.description.abstractDiabetic Retinopathy and Diabetic Macular Edema are diseases that affect vision and eventually may lead to blindness. Early detection is a must to prevent the progression of the disease imploring the need for effective computer-aided diagnostic techniques. In the following research paper, a robust method has been proposed to segment hard exudates from digital, color fundus images using anisotropic diffusion and adaptive thresholding followed by a support vector machine for classification. The geometrical, shape and orientation features have been used to correctly classify the segmented objects as exudates or false pixels. The proposed technique has a high specificity and eliminates false positives correctly when applied across a wide range of images. The exudates segmented have a high degree of accuracy and no false positives are generated in case of non-diseased images. The proposed method has been tested on a total 189 images of the DIARETDB1 and MESSIDOR database and achieves an accuracy of 92.13% and 90% respectively. The proposed method can be used in the development for some computer aided technology for ocular diseases detection from fundus images.en_US
dc.languageengen_US
dc.relation.ispartof2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedingsen_US
dc.source2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings (7985527)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherMedical Imagingen_US
dc.subject.otherDiabetic Macular Edemaen_US
dc.subject.otherFundus imageen_US
dc.subject.otherExudatesen_US
dc.subject.otherAnisotropic Diffusionen_US
dc.subject.otherSVMen_US
dc.titleAutomated classification of exudates from digital fundus imagesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.identifier.doi10.1109/IWOBI.2017.7985527en_US
dc.identifier.scopus85028562476-
dc.contributor.authorscopusid57195518313-
dc.contributor.authorscopusid56800652200-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid6602376272-
dc.identifier.issue7985527-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.ulpgces
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

5
checked on Dec 15, 2024

WEB OF SCIENCETM
Citations

4
checked on Dec 15, 2024

Page view(s)

146
checked on Jun 15, 2024

Download(s)

94
checked on Jun 15, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.