Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/48801
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rekhi, Ravitej Singh | en_US |
dc.contributor.author | Issac, Ashish | en_US |
dc.contributor.author | Dutta, Malay Kishore | en_US |
dc.contributor.author | Travieso, Carlos M. | en_US |
dc.date.accessioned | 2018-11-24T01:03:10Z | - |
dc.date.available | 2018-11-24T01:03:10Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.isbn | 9781538608500 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/48801 | - |
dc.description.abstract | Diabetic Retinopathy and Diabetic Macular Edema are diseases that affect vision and eventually may lead to blindness. Early detection is a must to prevent the progression of the disease imploring the need for effective computer-aided diagnostic techniques. In the following research paper, a robust method has been proposed to segment hard exudates from digital, color fundus images using anisotropic diffusion and adaptive thresholding followed by a support vector machine for classification. The geometrical, shape and orientation features have been used to correctly classify the segmented objects as exudates or false pixels. The proposed technique has a high specificity and eliminates false positives correctly when applied across a wide range of images. The exudates segmented have a high degree of accuracy and no false positives are generated in case of non-diseased images. The proposed method has been tested on a total 189 images of the DIARETDB1 and MESSIDOR database and achieves an accuracy of 92.13% and 90% respectively. The proposed method can be used in the development for some computer aided technology for ocular diseases detection from fundus images. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings | en_US |
dc.source | 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings (7985527) | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | Medical Imaging | en_US |
dc.subject.other | Diabetic Macular Edema | en_US |
dc.subject.other | Fundus image | en_US |
dc.subject.other | Exudates | en_US |
dc.subject.other | Anisotropic Diffusion | en_US |
dc.subject.other | SVM | en_US |
dc.title | Automated classification of exudates from digital fundus images | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.identifier.doi | 10.1109/IWOBI.2017.7985527 | en_US |
dc.identifier.scopus | 85028562476 | - |
dc.contributor.authorscopusid | 57195518313 | - |
dc.contributor.authorscopusid | 56800652200 | - |
dc.contributor.authorscopusid | 35291803600 | - |
dc.contributor.authorscopusid | 6602376272 | - |
dc.identifier.issue | 7985527 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | es |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Appears in Collections: | Actas de congresos |
SCOPUSTM
Citations
5
checked on Dec 15, 2024
WEB OF SCIENCETM
Citations
4
checked on Dec 15, 2024
Page view(s)
146
checked on Jun 15, 2024
Download(s)
94
checked on Jun 15, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.