Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/48801
Título: | Automated classification of exudates from digital fundus images | Autores/as: | Rekhi, Ravitej Singh Issac, Ashish Dutta, Malay Kishore Travieso, Carlos M. |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Medical Imaging Diabetic Macular Edema Fundus image Exudates Anisotropic Diffusion, et al. |
Fecha de publicación: | 2017 | Publicación seriada: | 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings | Resumen: | Diabetic Retinopathy and Diabetic Macular Edema are diseases that affect vision and eventually may lead to blindness. Early detection is a must to prevent the progression of the disease imploring the need for effective computer-aided diagnostic techniques. In the following research paper, a robust method has been proposed to segment hard exudates from digital, color fundus images using anisotropic diffusion and adaptive thresholding followed by a support vector machine for classification. The geometrical, shape and orientation features have been used to correctly classify the segmented objects as exudates or false pixels. The proposed technique has a high specificity and eliminates false positives correctly when applied across a wide range of images. The exudates segmented have a high degree of accuracy and no false positives are generated in case of non-diseased images. The proposed method has been tested on a total 189 images of the DIARETDB1 and MESSIDOR database and achieves an accuracy of 92.13% and 90% respectively. The proposed method can be used in the development for some computer aided technology for ocular diseases detection from fundus images. | URI: | http://hdl.handle.net/10553/48801 | ISBN: | 9781538608500 | DOI: | 10.1109/IWOBI.2017.7985527 | Fuente: | 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings (7985527) |
Colección: | Actas de congresos |
Citas SCOPUSTM
32
actualizado el 17-nov-2024
Visitas
75
actualizado el 29-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.