Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44054
Título: | Discriminative multi-projection vectors: Modifying the discriminative common vectors approach for face verification | Autores/as: | Del Pozo-Baños, Marcos Travieso, Carlos M. Alonso, Jesús B. Ferrer, Miguel A. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Databases , Training , Feature extraction , Face , Erbium , Null space , Error analysis , Discriminative multi-projection vectors , discriminative common vectors , face verification , small sample size problem , k-nearest neighbours , pattern recognition | Fecha de publicación: | 2010 | Editor/a: | 1071-6572 | Publicación seriada: | Proceedings - International Carnahan Conference on Security Technology | Conferencia: | 44th Annual 2010 IEEE International Carnahan Conference on Security Technology 44th Annual 2010 IEEE International Carnahan Conference on Security Technology, ICCST 2010 |
Resumen: | Due its possibilities in security systems and robotics, face recognition is one of the most researched areas within the biometric field. In a common scenario from real life face recognition problem, the dimension in the sample space is larger than the number of training samples per class. This is known as the “small sample size problem”. Discriminative Common Vectors (DCV) technique has been used to face this problem successfully. In this paper, we introduce a new approach based on DCV theory to increase its performance in face verification tasks. This modification uses a specific set of projecting vectors selected by an optimization algorithm based on the classifier's performance, and in the fact that no such thing as common vectors exists when this set contains vectors from the range of the within-class scattering matrix (SW ). Based on these two ideas, we may call this approach Discriminative Multi-Projection Vectors (DMPV) as it projects samples in both range and null space of SW. We tested the system with different databases and results show that DMPV outperforms classic DCV method. | URI: | http://hdl.handle.net/10553/44054 | ISBN: | 9781424474004 | ISSN: | 1071-6572 | DOI: | 10.1109/CCST.2010.5678716 | Fuente: | Proceedings - International Carnahan Conference on Security Technology[ISSN 1071-6572] (5678716), p. 190-197 |
Colección: | Actas de congresos |
Citas SCOPUSTM
1
actualizado el 01-dic-2024
Visitas
95
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.