Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/44054
DC FieldValueLanguage
dc.contributor.authorDel Pozo-Baños, Marcosen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorAlonso, Jesús B.en_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.otherTravieso-Gonzalez, Carlos M.-
dc.contributor.otherdel Pozo Banos, Marcos-
dc.contributor.otherFerrer, Miguel A-
dc.date.accessioned2018-11-21T19:53:00Z-
dc.date.available2018-11-21T19:53:00Z-
dc.date.issued2010en_US
dc.identifier.isbn9781424474004en_US
dc.identifier.issn1071-6572en_US
dc.identifier.urihttp://hdl.handle.net/10553/44054-
dc.description.abstractDue its possibilities in security systems and robotics, face recognition is one of the most researched areas within the biometric field. In a common scenario from real life face recognition problem, the dimension in the sample space is larger than the number of training samples per class. This is known as the “small sample size problem”. Discriminative Common Vectors (DCV) technique has been used to face this problem successfully. In this paper, we introduce a new approach based on DCV theory to increase its performance in face verification tasks. This modification uses a specific set of projecting vectors selected by an optimization algorithm based on the classifier's performance, and in the fact that no such thing as common vectors exists when this set contains vectors from the range of the within-class scattering matrix (SW ). Based on these two ideas, we may call this approach Discriminative Multi-Projection Vectors (DMPV) as it projects samples in both range and null space of SW. We tested the system with different databases and results show that DMPV outperforms classic DCV method.en_US
dc.languagespaen_US
dc.publisher1071-6572en_US
dc.relation.ispartofProceedings - International Carnahan Conference on Security Technologyen_US
dc.sourceProceedings - International Carnahan Conference on Security Technology[ISSN 1071-6572] (5678716), p. 190-197en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherDatabases , Training , Feature extraction , Face , Erbium , Null space , Error analysis , Discriminative multi-projection vectors , discriminative common vectors , face verification , small sample size problem , k-nearest neighbours , pattern recognitionen_US
dc.titleDiscriminative multi-projection vectors: Modifying the discriminative common vectors approach for face verificationen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference44th Annual 2010 IEEE International Carnahan Conference on Security Technology
dc.relation.conference44th Annual 2010 IEEE International Carnahan Conference on Security Technology, ICCST 2010
dc.identifier.doi10.1109/CCST.2010.5678716
dc.identifier.scopus78751681259-
dc.identifier.isi000287496000028-
dcterms.isPartOf44Th Annual 2010 Ieee International Carnahan Conference On Security Technology-
dcterms.source44Th Annual 2010 Ieee International Carnahan Conference On Security Technology[ISSN 1071-6572], p. 190-197-
dc.contributor.authorscopusid35241841700-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid24774957200-
dc.contributor.authorscopusid55636321172-
dc.description.lastpage197-
dc.identifier.issue5678716-
dc.description.firstpage190-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.wosWOS:000287496000028-
dc.contributor.daisngid2996557-
dc.contributor.daisngid265761-
dc.contributor.daisngid418703-
dc.contributor.daisngid233119-
dc.identifier.investigatorRIDN-5967-2014-
dc.identifier.investigatorRIDR-8617-2016-
dc.identifier.investigatorRIDL-3863-2013-
dc.identifier.externalWOS:000287496000028-
dc.contributor.wosstandardWOS:del Pozo-Banos, M
dc.contributor.wosstandardWOS:Travieso, CM
dc.contributor.wosstandardWOS:Alonso, JB
dc.contributor.wosstandardWOS:Ferrer, MA
dc.date.coverdateDiciembre 2010
dc.identifier.conferenceidevents120746
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate05-10-2010-
crisitem.event.eventsstartdate05-10-2010-
crisitem.event.eventsenddate08-10-2010-
crisitem.event.eventsenddate08-10-2010-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2024

Page view(s)

95
checked on Jul 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.