Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44054
Título: Discriminative multi-projection vectors: Modifying the discriminative common vectors approach for face verification
Autores/as: Del Pozo-Baños, Marcos
Travieso, Carlos M. 
Alonso, Jesús B. 
Ferrer, Miguel A. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Databases , Training , Feature extraction , Face , Erbium , Null space , Error analysis , Discriminative multi-projection vectors , discriminative common vectors , face verification , small sample size problem , k-nearest neighbours , pattern recognition
Fecha de publicación: 2010
Editor/a: 1071-6572
Publicación seriada: Proceedings - International Carnahan Conference on Security Technology 
Conferencia: 44th Annual 2010 IEEE International Carnahan Conference on Security Technology 
44th Annual 2010 IEEE International Carnahan Conference on Security Technology, ICCST 2010 
Resumen: Due its possibilities in security systems and robotics, face recognition is one of the most researched areas within the biometric field. In a common scenario from real life face recognition problem, the dimension in the sample space is larger than the number of training samples per class. This is known as the “small sample size problem”. Discriminative Common Vectors (DCV) technique has been used to face this problem successfully. In this paper, we introduce a new approach based on DCV theory to increase its performance in face verification tasks. This modification uses a specific set of projecting vectors selected by an optimization algorithm based on the classifier's performance, and in the fact that no such thing as common vectors exists when this set contains vectors from the range of the within-class scattering matrix (SW ). Based on these two ideas, we may call this approach Discriminative Multi-Projection Vectors (DMPV) as it projects samples in both range and null space of SW. We tested the system with different databases and results show that DMPV outperforms classic DCV method.
URI: http://hdl.handle.net/10553/44054
ISBN: 9781424474004
ISSN: 1071-6572
DOI: 10.1109/CCST.2010.5678716
Fuente: Proceedings - International Carnahan Conference on Security Technology[ISSN 1071-6572] (5678716), p. 190-197
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

95
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.