Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/43965
DC FieldValueLanguage
dc.contributor.authordel Pozo-Baños, Marcosen_US
dc.contributor.authorTicay-Rivas, Jaime R.en_US
dc.contributor.authorAlonso, Jesús B.en_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.otherdel Pozo Banos, Marcos-
dc.contributor.otherAlonso-Hernandez, Jesus B.-
dc.contributor.otherTravieso-Gonzalez, Carlos M.-
dc.date.accessioned2018-11-21T19:12:49Z-
dc.date.available2018-11-21T19:12:49Z-
dc.date.issued2015en_US
dc.identifier.issn0925-2312en_US
dc.identifier.urihttp://hdl.handle.net/10553/43965-
dc.description.abstractAn extensive study on pollen grain identification is presented in this work. A combination of geometrical and texture characteristics is proposed as pollen grain discriminative features as well as the usage of the most popular feature extraction techniques. Multi-Layer Neural Network and Least Square Support Vector Machines (LS-SVM) with Radial Basis Function were used as classifier systems. K-fold and hold-out cross-validation techniques were applied in order to achieve reliable results. When testing with a 17-species database, the combination of the proposed set of features processed by Linear Discriminant Analysis and the LS-SVM has provided the best performance, reaching a 94.92%±0.61 of success rate. Subsequently, the combination of both classifier methods provided better results, achieving 95.27%±0.49 of accuracyen_US
dc.languagespaen_US
dc.publisher0925-2312-
dc.relation.ispartofNeurocomputingen_US
dc.sourceNeurocomputing[ISSN 0925-2312],v. 150, p. 377-391en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherPollen grain identificationPlant biometricPattern recognitionPalynologyen_US
dc.titleFeatures extraction techniques for pollen grain classificationen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.relation.conferenceIEEE 17th International Conference on Intelligent Engineering Systems (INES)
dc.identifier.doi10.1016/j.neucom.2014.05.085
dc.identifier.scopus84922755210-
dc.identifier.isi000346952300005-
dcterms.isPartOfNeurocomputing-
dcterms.sourceNeurocomputing[ISSN 0925-2312],v. 150, p. 377-391-
dc.contributor.authorscopusid35241841700-
dc.contributor.authorscopusid37862263900-
dc.contributor.authorscopusid24774957200-
dc.contributor.authorscopusid6602376272-
dc.description.lastpage391-
dc.description.firstpage377-
dc.relation.volume150-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000346952300005-
dc.contributor.daisngid2996557-
dc.contributor.daisngid3828233-
dc.contributor.daisngid418703-
dc.contributor.daisngid265761-
dc.identifier.investigatorRIDR-8617-2016-
dc.identifier.investigatorRIDN-5977-2014-
dc.identifier.investigatorRIDNo ID-
dc.contributor.wosstandardWOS:del Pozo-Banos, M
dc.contributor.wosstandardWOS:Ticay-Rivas, JR
dc.contributor.wosstandardWOS:Alonso, JB
dc.contributor.wosstandardWOS:Travieso, CM
dc.date.coverdateEnero 2015
dc.identifier.conferenceidevents120890
dc.identifier.ulpgces
dc.description.sjr1,024
dc.description.jcr2,392
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate19-06-2013-
crisitem.event.eventsenddate21-06-2013-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

14
checked on Nov 17, 2024

Page view(s)

133
checked on Dec 31, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.