Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43965
Título: | Features extraction techniques for pollen grain classification | Autores/as: | del Pozo-Baños, Marcos Ticay-Rivas, Jaime R. Alonso, Jesús B. Travieso, Carlos M. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Pollen grain identificationPlant biometricPattern recognitionPalynology | Fecha de publicación: | 2015 | Editor/a: | 0925-2312 | Publicación seriada: | Neurocomputing | Conferencia: | IEEE 17th International Conference on Intelligent Engineering Systems (INES) | Resumen: | An extensive study on pollen grain identification is presented in this work. A combination of geometrical and texture characteristics is proposed as pollen grain discriminative features as well as the usage of the most popular feature extraction techniques. Multi-Layer Neural Network and Least Square Support Vector Machines (LS-SVM) with Radial Basis Function were used as classifier systems. K-fold and hold-out cross-validation techniques were applied in order to achieve reliable results. When testing with a 17-species database, the combination of the proposed set of features processed by Linear Discriminant Analysis and the LS-SVM has provided the best performance, reaching a 94.92%±0.61 of success rate. Subsequently, the combination of both classifier methods provided better results, achieving 95.27%±0.49 of accuracy | URI: | http://hdl.handle.net/10553/43965 | ISSN: | 0925-2312 | DOI: | 10.1016/j.neucom.2014.05.085 | Fuente: | Neurocomputing[ISSN 0925-2312],v. 150, p. 377-391 |
Colección: | Artículos |
Citas SCOPUSTM
17
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
14
actualizado el 17-nov-2024
Visitas
133
actualizado el 31-dic-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.