Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43965
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | del Pozo-Baños, Marcos | en_US |
dc.contributor.author | Ticay-Rivas, Jaime R. | en_US |
dc.contributor.author | Alonso, Jesús B. | en_US |
dc.contributor.author | Travieso, Carlos M. | en_US |
dc.contributor.other | del Pozo Banos, Marcos | - |
dc.contributor.other | Alonso-Hernandez, Jesus B. | - |
dc.contributor.other | Travieso-Gonzalez, Carlos M. | - |
dc.date.accessioned | 2018-11-21T19:12:49Z | - |
dc.date.available | 2018-11-21T19:12:49Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.issn | 0925-2312 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/43965 | - |
dc.description.abstract | An extensive study on pollen grain identification is presented in this work. A combination of geometrical and texture characteristics is proposed as pollen grain discriminative features as well as the usage of the most popular feature extraction techniques. Multi-Layer Neural Network and Least Square Support Vector Machines (LS-SVM) with Radial Basis Function were used as classifier systems. K-fold and hold-out cross-validation techniques were applied in order to achieve reliable results. When testing with a 17-species database, the combination of the proposed set of features processed by Linear Discriminant Analysis and the LS-SVM has provided the best performance, reaching a 94.92%±0.61 of success rate. Subsequently, the combination of both classifier methods provided better results, achieving 95.27%±0.49 of accuracy | en_US |
dc.language | spa | en_US |
dc.publisher | 0925-2312 | - |
dc.relation.ispartof | Neurocomputing | en_US |
dc.source | Neurocomputing[ISSN 0925-2312],v. 150, p. 377-391 | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Pollen grain identificationPlant biometricPattern recognitionPalynology | en_US |
dc.title | Features extraction techniques for pollen grain classification | en_US |
dc.type | info:eu-repo/semantics/Article | es |
dc.type | Article | es |
dc.relation.conference | IEEE 17th International Conference on Intelligent Engineering Systems (INES) | |
dc.identifier.doi | 10.1016/j.neucom.2014.05.085 | |
dc.identifier.scopus | 84922755210 | - |
dc.identifier.isi | 000346952300005 | - |
dcterms.isPartOf | Neurocomputing | - |
dcterms.source | Neurocomputing[ISSN 0925-2312],v. 150, p. 377-391 | - |
dc.contributor.authorscopusid | 35241841700 | - |
dc.contributor.authorscopusid | 37862263900 | - |
dc.contributor.authorscopusid | 24774957200 | - |
dc.contributor.authorscopusid | 6602376272 | - |
dc.description.lastpage | 391 | - |
dc.description.firstpage | 377 | - |
dc.relation.volume | 150 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.identifier.wos | WOS:000346952300005 | - |
dc.contributor.daisngid | 2996557 | - |
dc.contributor.daisngid | 3828233 | - |
dc.contributor.daisngid | 418703 | - |
dc.contributor.daisngid | 265761 | - |
dc.identifier.investigatorRID | R-8617-2016 | - |
dc.identifier.investigatorRID | N-5977-2014 | - |
dc.identifier.investigatorRID | No ID | - |
dc.contributor.wosstandard | WOS:del Pozo-Banos, M | |
dc.contributor.wosstandard | WOS:Ticay-Rivas, JR | |
dc.contributor.wosstandard | WOS:Alonso, JB | |
dc.contributor.wosstandard | WOS:Travieso, CM | |
dc.date.coverdate | Enero 2015 | |
dc.identifier.conferenceid | events120890 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 1,024 | |
dc.description.jcr | 2,392 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 19-06-2013 | - |
crisitem.event.eventsenddate | 21-06-2013 | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-7866-585X | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Alonso Hernández, Jesús Bernardino | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Colección: | Artículos |
Citas SCOPUSTM
17
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
14
actualizado el 17-nov-2024
Visitas
133
actualizado el 31-dic-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.