Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/43804
DC FieldValueLanguage
dc.contributor.authorCarta, José A.en_US
dc.contributor.authorVelázquez, Sergioen_US
dc.date.accessioned2018-11-21T17:57:52Z-
dc.date.available2018-11-21T17:57:52Z-
dc.date.issued2011en_US
dc.identifier.issn0360-5442en_US
dc.identifier.urihttp://hdl.handle.net/10553/43804-
dc.description.abstractThis paper proposes the use of a new Measure–Correlate–Predict (MCP) method to estimate the long-term wind speed characteristics at a potential wind energy conversion site. The proposed method uses the probability density function of the wind speed at a candidate site conditioned to the wind speed at a reference site. Contingency-type bivariate distributions with specified marginal distributions are used for this purpose. The proposed model was applied in this paper to wind speeds recorded at six weather stations located in the Canary Islands (Spain). The conclusion reached is that the method presented in this paper, in the majority of cases, provides better results than those obtained with other MCP methods used for purposes of comparison. The metrics employed in the analysis were the coefficient of determination (R2) and the root relative squared error (RRSE). The characteristics that were analysed were the capacity of the model to estimate the long-term wind speed probability distribution function, the long-term wind power density probability distribution function and the long-term wind turbine power output probability distribution function at the candidate site.en_US
dc.languageengen_US
dc.publisher0360-5442-
dc.relation.ispartofEnergyen_US
dc.sourceEnergy [ISSN 0360-5442],v. 36 (5), p. 2671-2685en_US
dc.subject3322 Tecnología energéticaen_US
dc.subject1208 Probabilidaden_US
dc.subject.otherConditional distributionsen_US
dc.subject.otherMeasure–correlate–predict methoden_US
dc.subject.otherWind speeden_US
dc.subject.otherStratified cross-validationen_US
dc.subject.otherRoot relative squared erroren_US
dc.titleA new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion siteen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.energy.2011.02.008
dc.identifier.scopus79955675448-
dc.identifier.isi000291411400039
dc.contributor.authorscopusid7003652043-
dc.contributor.authorscopusid24336784400-
dc.description.lastpage2685-
dc.description.firstpage2671-
dc.relation.volume36-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid1198474
dc.contributor.daisngid8871675
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Carta, JA
dc.contributor.wosstandardWOS:Velazquez, S
dc.date.coverdateEnero 2011
dc.identifier.ulpgces
dc.description.sjr1,609
dc.description.jcr3,487
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-1379-0075-
crisitem.author.orcid0000-0002-0392-6605-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameCarta González, José Antonio-
crisitem.author.fullNameVelázquez Medina, Sergio Leandro-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

65
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

54
checked on Nov 24, 2024

Page view(s)

104
checked on Jan 24, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.