Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43804
Título: A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site
Autores/as: Carta, José A. 
Velázquez, Sergio 
Clasificación UNESCO: 3322 Tecnología energética
1208 Probabilidad
Palabras clave: Conditional distributions
Measure–correlate–predict method
Wind speed
Stratified cross-validation
Root relative squared error
Fecha de publicación: 2011
Editor/a: 0360-5442
Publicación seriada: Energy 
Resumen: This paper proposes the use of a new Measure–Correlate–Predict (MCP) method to estimate the long-term wind speed characteristics at a potential wind energy conversion site. The proposed method uses the probability density function of the wind speed at a candidate site conditioned to the wind speed at a reference site. Contingency-type bivariate distributions with specified marginal distributions are used for this purpose. The proposed model was applied in this paper to wind speeds recorded at six weather stations located in the Canary Islands (Spain). The conclusion reached is that the method presented in this paper, in the majority of cases, provides better results than those obtained with other MCP methods used for purposes of comparison. The metrics employed in the analysis were the coefficient of determination (R2) and the root relative squared error (RRSE). The characteristics that were analysed were the capacity of the model to estimate the long-term wind speed probability distribution function, the long-term wind power density probability distribution function and the long-term wind turbine power output probability distribution function at the candidate site.
URI: http://hdl.handle.net/10553/43804
ISSN: 0360-5442
DOI: 10.1016/j.energy.2011.02.008
Fuente: Energy [ISSN 0360-5442],v. 36 (5), p. 2671-2685
Colección:Artículos
Vista completa

Citas SCOPUSTM   

65
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

54
actualizado el 24-nov-2024

Visitas

104
actualizado el 24-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.