Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43804
Título: | A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site | Autores/as: | Carta, José A. Velázquez, Sergio |
Clasificación UNESCO: | 3322 Tecnología energética 1208 Probabilidad |
Palabras clave: | Conditional distributions Measure–correlate–predict method Wind speed Stratified cross-validation Root relative squared error |
Fecha de publicación: | 2011 | Editor/a: | 0360-5442 | Publicación seriada: | Energy | Resumen: | This paper proposes the use of a new Measure–Correlate–Predict (MCP) method to estimate the long-term wind speed characteristics at a potential wind energy conversion site. The proposed method uses the probability density function of the wind speed at a candidate site conditioned to the wind speed at a reference site. Contingency-type bivariate distributions with specified marginal distributions are used for this purpose. The proposed model was applied in this paper to wind speeds recorded at six weather stations located in the Canary Islands (Spain). The conclusion reached is that the method presented in this paper, in the majority of cases, provides better results than those obtained with other MCP methods used for purposes of comparison. The metrics employed in the analysis were the coefficient of determination (R2) and the root relative squared error (RRSE). The characteristics that were analysed were the capacity of the model to estimate the long-term wind speed probability distribution function, the long-term wind power density probability distribution function and the long-term wind turbine power output probability distribution function at the candidate site. | URI: | http://hdl.handle.net/10553/43804 | ISSN: | 0360-5442 | DOI: | 10.1016/j.energy.2011.02.008 | Fuente: | Energy [ISSN 0360-5442],v. 36 (5), p. 2671-2685 |
Colección: | Artículos |
Citas SCOPUSTM
65
actualizado el 01-dic-2024
Citas de WEB OF SCIENCETM
Citations
54
actualizado el 24-nov-2024
Visitas
104
actualizado el 24-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.