Please use this identifier to cite or link to this item:
Title: Ellipse motion estimation using parametric snakes
Authors: Alvarez, Luis 
González Sánchez, Esther 
Cuenca, Carmelo 
Trujillo, Agustín 
Tahoces, Pablo G.
Carreira, José M.
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
120602 Ecuaciones diferenciales
120326 Simulación
120601 Construcción de algoritmos
Keywords: Ellipse
Active contours
3D images, et al
Issue Date: 2018
Project: Nuevos Modelos Matemáticos Para la Segmentación y Clasificación en Imágenes 
Journal: Journal of Mathematical Imaging and Vision 
Abstract: In this paper we propose a multiscale parametric snake model for ellipse motion estimation across a sequence of images. We use a robust ellipse parameterization based on the geometry of the intersection of a cylinder and a plane. The ellipse parameters are optimized in each frame by searching for local minima of the snake model energy including temporal coherence in the ellipse motion. One advantage of this method is that it just considers the convolution of the image with a Gaussian kernel and its gradient, and no edge detection is required. A detailed study about the numerical evaluation of the snake energy on ellipses is presented. We propose a Newton–Raphson-type algorithm to estimate a local minimum of the energy. We present some experimental results on synthetic data, real video sequences and 3D medical images.
ISSN: 0924-9907
DOI: 10.1007/s10851-018-0798-9
Source: Journal of Mathematical Imaging and Vision[ISSN 0924-9907],v. 60(7), p. 1095-1110
Appears in Collections:Artículos
Show full item record

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.