Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/41494
Title: | Ellipse motion estimation using parametric snakes | Authors: | Alvarez, Luis González Sánchez, Esther Cuenca, Carmelo Trujillo, Agustín Tahoces, Pablo G. Carreira, José M. |
UNESCO Clasification: | 220990 Tratamiento digital. Imágenes 120602 Ecuaciones diferenciales 120326 Simulación 120601 Construcción de algoritmos |
Keywords: | Ellipse Snakes Active contours Tracking 3D images, et al |
Issue Date: | 2018 | Project: | Nuevos Modelos Matemáticos Para la Segmentación y Clasificación en Imágenes | Journal: | Journal of Mathematical Imaging and Vision | Abstract: | In this paper we propose a multiscale parametric snake model for ellipse motion estimation across a sequence of images. We use a robust ellipse parameterization based on the geometry of the intersection of a cylinder and a plane. The ellipse parameters are optimized in each frame by searching for local minima of the snake model energy including temporal coherence in the ellipse motion. One advantage of this method is that it just considers the convolution of the image with a Gaussian kernel and its gradient, and no edge detection is required. A detailed study about the numerical evaluation of the snake energy on ellipses is presented. We propose a Newton–Raphson-type algorithm to estimate a local minimum of the energy. We present some experimental results on synthetic data, real video sequences and 3D medical images. | URI: | http://hdl.handle.net/10553/41494 | ISSN: | 0924-9907 | DOI: | 10.1007/s10851-018-0798-9 | Source: | Journal of Mathematical Imaging and Vision[ISSN 0924-9907],v. 60(7), p. 1095-1110 |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.