Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/36071
Título: Estimation of the lens distortion model by minimizing a line reprojection error
Autores/as: Santana-Cedrés, Daniel 
Gomez, Luis 
Alemán-Flores, Miguel 
Salgado de la Nuez, Agustín Javier 
Esclarín, Julio 
Mazorra, Luis 
Alvarez, Luis 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
120602 Ecuaciones diferenciales
120601 Construcción de algoritmos
120326 Simulación
Palabras clave: Camera sensor
Lens distortion
Homography estimation
Reprojection error
Fecha de publicación: 2017
Publicación seriada: IEEE Sensors Journal 
Resumen: Most techniques for camera calibration that use planar calibration patterns require the computation of a lens distortion model and a homography. Both are simultaneously refined using a bundle adjustment that minimizes the reprojection error of a collection of points when projected from the scene onto the camera sensor. These points are usually the corners of the rectangles of a calibration pattern. However, if the lens shows a significant distortion, the location and matching of the corners can be difficult and inaccurate. To cope with this problem, instead of point correspondences, we propose to use line correspondences to compute the reprojection error. We have designed a fully automatic algorithm to estimate the lens distortion model and the homography by computing line correspondences and minimizing the line reprojection error. In the experimental setup, we focus on the analysis of the quality of the obtained lens distortion model. We present some experiments that show that the proposed method outperforms the results obtained by standard methods to compute lens distortion models based on line rectification.
URI: http://hdl.handle.net/10553/36071
ISSN: 1530-437X
DOI: 10.1109/JSEN.2017.2677475
Fuente: IEEE Sensors Journal[ISSN 1530-437X],v. 17 (2677475), p. 2848-2855
Colección:Artículos
miniatura
pdf
Adobe PDF (802,93 kB)
Vista completa

Citas SCOPUSTM   

13
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

9
actualizado el 15-dic-2024

Visitas

175
actualizado el 27-jul-2024

Descargas

76
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.