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Lens Distortion Model Estimation by Minimizing
Line Reprojection Errors

Daniel Santana-Cedrés, Luis Gomez Member, IEEE , Miguel Alemán-Flores, Agustı́n Salgado,
Julio Escları́n, Luis Mazorra, and Luis Alvarez

Abstract—Most techniques for camera calibration using planar calibration patterns require the computation of a lens distortion model
and a homography, given by a 3× 3 matrix. Both are simultaneously refined using a bundle adjustment, which minimizes the
reprojection error of a collection of points (usually the corners of the rectangles of a calibration pattern) when projected from the image
onto the camera sensor. If the lens shows a significant distortion, the location and matching of the corners can be difficult and
inaccurate. To cope with this problem, instead of point correspondences, we propose to use line correspondences to compute the
reprojection error. We have designed a fully automatic algorithm to estimate the lens distortion model and the homography by
computing line correspondences and minimizing the line reprojection error. In the experimental setup we focus on the analysis of the
quality of the obtained lens distortion model. We present some experiments which show that the proposed method outperforms the
results obtained by the standard methods to compute lens distortion models based on line rectification.

Index Terms—camera sensor, lens distortion, homography estimation, reprojection error
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1 INTRODUCTION

L Ens distortion is an optical aberration which causes
straight lines in the scene to be projected onto the image

as distorted lines. To measure the amount of lens distortion,
professional commercial software, such as Imatest (http://
www.imatest.com/) or DxO (http://www.dxomark.com),
proposes to measure how far the distorted lines in the image
are from being straight lines. The lens distortion profile is
usually modeled using a radial model given by the general
equation: (

x̂− xc
ŷ − yc

)
= L(r)

(
x− xc
y − yc

)
, (1)

where (xc, yc) represents the distortion center, (x, y) is
a point in the image domain, (x̂, ŷ) is the transformed
(distortion-free) point, r = ‖(x, y)− (xc, yc)‖, and L(r)
represents the shape of the distortion model. Two types of
radial lens distortion models are the most frequently applied
in computer vision due to their excellent trade-off between
accuracy and easy calculation: the polynomial model and
the division model. The polynomial model is formulated as

L(r) = 1 + k1r
2 + k2r

4 + ..+ knr
2n, (2)

whereas the division model is formulated as

L(r) =
1

1 + k1r2 + k2r4 + ..+ knr2n
. (3)
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The distortion center (xc, yc) and the distortion param-
eters {k1, .., kn} are usually estimated in order to minimize
a line rectification error. Once the lens distortion model is
fully estimated, it can be applied to the image to correct the
lens distortion. Commercial software, like Imatest or DxO,
proposes to use a flat calibration pattern to estimate lens
distortion models. For each lens available in the market,
images of the calibration pattern are taken for most of the
lens/camera configurations (including the different focal
lengths in the case of zoom lens). From these images, the
lens distortion models are computed and all this informa-
tion is stored in a large database. When a user wants to
correct the lens distortion of an image, the algorithm uses
the image EXIF metadata to get the lens/camera configura-
tion and to choose, in the stored database, the lens distortion
model to be applied for the correction. This approach has the
advantage that the distortion models are computed using
calibration patterns, for which accurate estimations can be
obtained and the resulting models can be applied to any
image acquired with the same lens configuration. In par-
ticular, distortion correction can also be applied to images
with no visible lines. However, using a line rectification
criterion to estimate the distortion model does not exploit
the metric information provided by calibration patterns,
where we know the exact position of each line in the pattern.
To exploit such metric information we need to take into
account the plane homography H given by a 3 × 3 matrix.
The combination of the homography and the lens distortion
model fully determines the way the calibration pattern is
projected onto the camera sensor. We point out that the lens
distortion model is an internal camera feature that is usually
assumed to be independent of the particular location or
orientation of the camera. That is, if we take several im-
ages of the calibration pattern from different locations and
orientations, we can assume that all cameras share the same
lens distortion model, but with different homographies. In
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fact, this is a simplification because, as shown in [1], the
lens distortion model depends slightly on the distance at
which the camera is focused, so that it is not completely
independent of the camera location in the scene.

In this paper, we propose a new method to compute
the lens distortion model and the homography based on
the minimization of the line reprojection error. We use a
nonlinear minimization technique which requires a param-
eter initialization, in such a way that we also have to deal
with the problem of lens distortion model and homography
initialization. On the other hand, in order to properly define
the line reprojection error, we need to match the lines of the
calibration pattern with the distorted lines projected onto
the camera sensor.

Once the lens distortion model and the homography
have been estimated, we can perform further 3D calibration
procedures. For instance, if several images of the calibration
pattern taken with the same camera are available, we can
use the well-known Zhang technique introduced in [2] to
compute all internal and external parameters of the cameras.
However, in the experimental setup of this paper we do not
focus on 3D calibration procedures, we focus on the analysis
of the quality of the lens distortion model obtained with the
proposed method which is an internal feature of the camera.

The rest of the paper is organized as follows : In section
2, we present some related works. In section 3, the proposed
method is explained. Section 4 shows some experiments
using a calibration pattern. Finally, in section 5, we present
some conclusions.

2 RELATED WORKS

Commercial lenses can show several optic aberrations like
field curvature (see for instance [3]) or lens distortion.
Radial distortion models are commonly used in the liter-
ature to model the lens distortion aberration. In the sem-
inal paper [4], the author introduces the general shape of
polynomial lens distortion models. Division models were
initially proposed in [5], but have received special attention
after the research by Fitzgibbon [6]. The main advantage
of the division model is the requirement of fewer terms
than the polynomial model to cope with images showing
severe distortion. Therefore, the division model seems to be
more suitable for wide-angle lenses (see a recent review on
distortion models for wide-angle lenses in [7]). In [8] and
[9], a detailed analysis of high order models is presented,
including polynomial and division models. Moreover, in the
case of real images, the authors evaluate the accuracy of
the lens distortion model by extracting and matching points
using the SIFT method in an image of a highly textured
pattern. A homography to match the camera projection as
well as the lens distortion parameter are then estimated
by minimizing the reprojection error. The minimization of
the reprojection error is also a standard tool in camera
calibration. In the seminal paper [2], the reprojection error is
used to optimize camera calibration parameters.

Most of the methods to estimate lens distortion models
are based on distorted line rectification. This approach is
used, for instance, in [10], [11], [12] and [1]. New automatic
methods without user intervention have recently emerged.
In [13], an automatic method to estimate radial distortion

models is presented. In [14] and [15], the authors present
a detailed study about calibration harp reliability in the
context of high-precision camera distortion measurements.
In [16], the authors present a detailed study about different
models for lens distortion aberrations. In [17], the authors
introduce a metric measure of lens distortion using the pro-
jective cross ratio invariance. In [18], [19], the authors pro-
pose an improvement of the calibration procedure proposed
in [2] for a collection of images, by decoupling the lens
distortion and the camera parameter estimations. In [20],
the authors propose a method to estimate radial distortion
models based on the epipolar constraint. In [21], authors
propose a method for the automatic estimation of radial lens
distortion using several geometric constraints like rectilinear
elements and vanishing points. In [22], authors introduce a
method for the calibration of wide angle lens cameras where
points locations in the images are corrected using geometric
constraint and the lens distortion model is computed by
minimizing a point reprojection error.

In this paper, we use two-parameter radial models due
to their simplicity and accuracy. In previous works (see
[23] and [24]), we have introduced a method to estimate
two-parameter models which is able to cope with a high
distortion level. The method is based on the estimation of
distorted lines in the images. The outcomes of this method
are:

1) A collection of distorted lines {lk}k=1,...,Nlines
de-

tected in the image.
2) For each distorted line k, a collection of edge points
{xk,j}j=1,...,Nk

belonging to the distorted line.
3) A two-parameter distortion model u =

(xc, yc, k1, k2) computed by line rectification.

These outcomes will be used in the method we propose
in this paper.

3 PROPOSED METHOD

In fig. 1, we show an image of the calibration pattern we use
acquired with a Tokina DX 11-16mm lens showing a high
distortion. We observe that the calibration pattern consists
of a collection of straight lines {l′k′}k′=1,...,N ′

lines
given by

the edges of the squares. We also point out that we have
included 3 colored squares in the center of the calibration
pattern, that we will use as reference system.

In the case of a distortion-free lens, the camera follows
the well-known pinhole model and, for any plane in the
scene, there exists a homography H which projects the
image plane onto the 3D plane. That is, if x = (x, y) is an
image point, then its projection x′(x,H) in the 3D plane is
given by

x′(x,H) =
h00x+ h01y + h02
h20x+ h21y + h22

(4)

y′(x,H) =
h10x+ h11y + h12
h20x+ h21y + h22

. (5)

If the lens suffers from distortion aberration, we need to
correct the lens distortion before applying the above pro-
jection equation. We denote by u = (xc, yc, k1, k2) the pa-
rameters of the distortion model (the distortion center and
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Fig. 1. Image of the calibration pattern we use taken with a Tokina DX
11-16mm lens showing a high distortion.

(a)

(b)

Fig. 2. We present a zoom of the calibration pattern. In (a) the corner
locations estimated using Harris method are shown. In (b) some points
of the lines used to compute the line reprojection error are shown.

the distortion parameters k1, k2). Given a point x = (x, y)
in the image, we denote by x̂

u
= (x̂u, ŷu) the corrected

point using the model given by u, which is computed by
the evaluation of equation (1). Then, by introducing the lens
distortion correction in the previous projection equation, we

obtain that

x̄′(x̄, H,u) =


h00x̂

u+h01ŷ
u+h02

h20x̂u+h21ŷu+h22
h10x̂

u+h11ŷ
u+h12

h20x̂u+h21ŷu+h22

. (6)

The method we propose in this paper can be divided
into the following steps :

1) We apply the method proposed in [23] to obtain
the distorted lines {lk}k=1,...,Nlines

, their associ-
ated points {xk,j}j=1,...,Nk

and an initial estimation
u = (xc, yc, k1, k2) for the lens distortion model.

2) We detect the colored squares in the image to fix a
reference system.

3) Using the reference system given by the colored
squares, we match the distorted lines {lk} in the im-
age with the straight lines {l′k′} in the actual calibra-
tion pattern, obtaining a collection of corresponding
lines {(lkn , l′k′n)}n=1,...,N and a first estimation of
the homography H .

4) We optimize H and u by minimizing the line repro-
jection error given by

E(H,u) =
N∑
n=1

Nkn∑
j=1

(
distance(x̄′(x̄kn,j , H,u), l′k′n)

)2
(7)

We point out that the usual approach to compute the
reprojection error is based on point correspondences. The
location of the corners of the squares of the projection of
the calibration pattern in the camera sensor are estimated
and then matched with the corners of the actual calibration
pattern. However, in the case of a high distortion level, the
estimation of the location of the corners in the image can
be difficult and inaccurate. One of the main novelties of our
approach is that we do not use corner estimations, and we
express the reprojection error in terms of the edge points
associated to the distorted lines, which is more robust. In
fig. 2 we illustrate the advantage of our approach showing a
zoom area of an image of the calibration pattern, in fig. 2(a)
we show the corner locations obtained using the standard
Harris method. We point out that the lens distortion can
strongly modify the square shapes and the Harris method
can provide quite inaccurate results because corner curva-
ture can be very high or very low, and in both cases corner
detection techniques provide inaccurate results. In the case
of high curvatures, the location of the detected corner is
displaced with respect to its actual location and in the case
of low curvature the corner can not even be detected or the
result can be completely wrong. We also point out that a
high amount of lens distortion can make very difficult the
procedure to match the corners in the image with the corner
in the calibration pattern. In 2(b) we illustrate the edge point
collection associated to the lines we use to perform the line
reprojection. These edge points and lines has been obtained
using the method introduced in [23] (in fact, in this method
edge points with high curvature are removed to improve
the accuracy of edge point location). We observe that the
location of the edge points is much more accurate than the
location of the corners. Moreover each line is defined by a
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large collection of edge points which provide a very robust
definition of the line.

Next we will explain the different steps of the proposed
method in more detail:

Step 1: Initial estimation of the distorted lines and the
lens distortion model. We use the method proposed in
[23], where we introduced a technique for the automatic
estimation of two-parameter radial distortion models, con-
sidering polynomial as well as division models. The method
first detects the edge points using the Canny edge detector.
Then, from the edge points, and by applying the Hough
transform enriched with a radial distortion parameter, we
extract the collection {lk}k=1,...,Nlines

of the longest dis-
torted lines within the image and their associated edge
points {xk,j}j=1,...,Nk

. From these lines, the first distortion
parameter is estimated. Afterward, we initialize the sec-
ond distortion parameter to zero and the two-parameter
model is embedded into an iterative nonlinear optimization
process to improve the estimation by minimizing a line
rectification error. This error is defined in the following way:
given a lens distortion model determined by the parameter
vector u, we define the undistorted line corresponding to
each distorted line lk by minimizing the following distance
error:

(αu
k , d

u
k ) = arg min

α,d

Nk∑
j=1

(
cos(α)x̂ukj + sin(α)ŷukj + d

)2
,

(8)
where (αu

k , d
u
k ) represents the orientation and the distance

to (0, 0) for the straight line which minimizes the square
distance from the corrected edge points to such line. This
well-known minimization problem has a simple close-form
solution (see for instance [25] for more details).

The line rectification error associated to the lens distor-
tion model given by the vector parameter u is then defined
as

E(u) =

∑Nlines
k=1

∑Nk

j=1

(
cos(αu

k)x̂u
kj + sin(αu

k)ŷu
kj + du

k

)2
∑Nlines

k=1 Nk

.

(9)
This optimization aims at reducing the distance from the

edge points to the lines, adjusting two distortion parameters
as well as the coordinates of the center of distortion. In
fig. 3(a), we illustrate the initial collection of distorted lines
obtained by applying this method to the image in fig. 1. An
important advantage of this method is that it can deal with
high distortion levels. However, the line rectification error
(9) does not exploit the knowledge of the scene that we have
when we deal with a calibration pattern, where we know
the exact location of all lines in the scene. Furthermore, it
does not take into account if, after the distortion correction,
the undistorted lines are the projection onto the image of
the actual lines in the calibration pattern. This is the main
motivation for the introduction, in this paper, of the line
reprojection error (7) in order to obtain a more accurate
model estimation.

Step 2: Detection of the colored squares in the image. The
calibration pattern we use includes 3 colored squares in red,
green and blue in the center. To obtain the location of such

colored squares in the image, we first transform the original
RGB image channels in the following way:Rnew = max{ 0 , R−max{G,B} }

Gnew = max{ 0 , G−max{R,B} }
Bnew = max{ 0 , B −max{R,G} }

Then we convolve the resulting image with a Gaussian
kernel. The locations of the maxima of these channels in the
new image correspond to points inside the colored squares.
In fig. 3(b), we illustrate the result of this image transforma-
tion and the location of the maxima of the channels using
the image in 1(b). This technique has also been used in
[26], in the context of automatic corner matching in Zhang’s
calibration pattern.

(a)

(b)

Fig. 3. (a) Illustration of the collection of distorted lines obtained using
the method proposed in [23], (b) Illustration of image transformation to
obtain the location of the colored squares.

Step 3: Matching of the lines in the calibration pat-
tern with their projections onto the image. First esti-
mation of the homography H . Once the locations of the
colored squares have been computed, we can match the
lines passing through the edges of such squares and their
corresponding ones in the actual calibration pattern. From
this line matching, we can compute a first estimation of
the homography using an algebraic close-form solution of
homography estimation from point or line matching (see
[25], [27], or [28] for more details). Once we obtain a first
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estimation of H , we use it to enlarge the number of line
matchings by projecting each distorted line in the actual cal-
ibration pattern. By using a proximity criterion, we identify
pairs consisting of a line in the calibration pattern and its
projection in the image. This is an incremental procedure
because, when new line matchings are found, we can re-
compute the homography H using all the line matchings
which have been obtained.

Step 4: Optimization of the lens distortion model and the
homography H by minimizing the line reprojection error.
We use the Levenberg-Marquardt algorithm to minimize
the reprojection error (7) with respect to the distortion
model u = (xc, yc, k1, k2) and the homography H using the
distortion model obtained in step 1 and the homography
obtained in step 3 as initial guess. The coefficients of the
homography H are of very different nature and a small
variation in some of such coefficients can produce large
variations in the reprojection error. For this reason, instead
of using the coefficients ofH as parameters of the minimiza-
tion algorithm, we use the locations of the projections of the
corners of the green square onto the image. This provides 8
parameters (the coordinates of the 4 corners in the image)
and the homography can easily be estimated from such
parameters (see for instance [25] for more details).

4 EXPERIMENTAL RESULTS

The estimation of the lens distortion model and the ho-
mography can be used to perform further 3D calibration
procedures. In particular, if we take several pictures of the
calibration pattern from different locations, we can use the
well-known Zhang technique introduced in [2] to compute
all internal and external parameters of the cameras. How-
ever, in the experimental setup of this paper we do not focus
on 3D calibration procedures, we focus on the analysis of the
quality of the obtained lens distortion model using a single
image. We are going to compare the results obtained by the
following 5 lens distortion estimation methods:

• EImarec : two-parameter polynomial model provided
by Imatest commercial software based on line rectifi-
cation.

• EP2p
rec : two-parameter polynomial model obtained

by the method introduced in [23] based on line
rectification.

• ED2p
rec : two-parameter division model obtained by

the method introduced in [23] based on line rectifica-
tion.

• EP2p
rep : two-parameter polynomial model obtained by

minimizing the reprojection error (7).
• ED2p

rep : two-parameter division model obtained by
minimizing the reprojection error (7).

We study the accuracy of the different methods for a
variety of commercial lenses. In table 1, we show, for the first
3 methods, the line rectification error given by equation (9)
and, for the last 2 methods, the reprojection error (7). In the
first row of the table, we present the information about the
lens and the focal length fixed (in parentheses) in the case of
zoom lenses. For the methodsEImarec ,EP2p

rec andED2p
rec , the er-

ror is expressed in pixels using formula (9). For the methods
EP2p
rep and ED2p

rep , the error is expressed in mm using formula

Error

Lens EIma
rec EP2p

rec ED2p
rec EP2p

rep ED2p
rep

Tokina 11-16 (11) - 3.594 0.784 0.503 (8.855) 0.144 (0.187)
Sigma 8-16 (8) 20.25 2.668 2.915 0.366 (0.538) 0.402 (0.522)
Sigma 8-16 (12) 7.11 1.833 1.853 0.243 (0.408) 0.246 (0.344)
Nikkor 14-24 (14) 3.87 0.430 0.434 0.085 (0.120) 0.086 (0.118)
Nikkor 14-24 (18) 2.82 0.273 0.273 0.057 (0.074) 0.057 (0.097)
Nikkor 17-35 (17) 3.66 1.304 1.340 0.241 (0.433) 0.247 (0.361)
Nikkor 24-70 (24) 2.97 0.337 0.338 0.075 (0.105) 0.076 (0.102)

TABLE 1
Errors obtained by the different methods in a variety of commercial

lenses.

(7). In this case, we show the final reprojection error after
minimization of (7) and, in parentheses, the original repro-
jection error obtained using the methods EP2p

rec and ED2p
rec

respectively. For the rectification error and the reprojection
error models, we emphasize the model with the lowest
error in bold. We point out that, in the case of Tokina lens,
which presents a high level of distortion, Imatest software
is not able to provide a lens distortion model and, for the
other lenses, the rectification error obtained in [23] is much
lower that the one computed using Imatest software. We
also observe that the minimization of the reprojection error
(7) reduces, in a significant way, the original reprojection
error computed using the lens distortion model provided
by the rectification method. We observe that, for the Tokina
DX 11-16mm lens, which shows a high distortion level, the
error provided by the division model is significantly lower
than that obtained by the polynomial model. However, for
the rest of the lenses, which present a moderate amount of
distortion, the polynomial model is slightly better than the
division one.

In tables 2 and 3, we show the coefficients of the distor-
tion model obtained for the different methods. As proposed
in Imatest software, we express the distortion coefficients
in ”normalized in center-corner” units, given by the expres-
sions

k̃1 = r2maxk1, k̃2 = r4maxk2,

where rmax is the maximum distance from the distortion
center to the image domain corners. These normalized
values are independent of the image resolution. In fig. 4
we show the plotting of the function L(r) given by the
equation (2) or (3), in normalized coordinates, obtained
using different lens distortion estimation methods for the
Tokina DX 11-16mm lens and the Nikkor 17-35mm lens.
The Tokina lens shows a high level of distortion, the Imatest
software fails to estimate a lens distortion model and we
can observe in the plotting that the polynomial models are
not able to cope with such high amount of distortion. In
this case, the line reprojection error is much lower using
division model than polynomial models. The Nikkor lens
shows a moderate levels of distortion and in this case the
plotting of the function L(r) is similar for polynomial and
division models except in the case of the model provided by
Imatest software which is quite different and shows a high
rectification error.

To illustrate the profile of the obtained lens distortion
models for each lens, we use the representation showed in
fig. 5, where the profile of the Tokina DX 11-16mm lens is
presented using a 11 focal length and the division model.
In this profile, the bright lines represent a lattice of the 3D
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k̃1

Lens EIma
rec EP2p

rec ED2p
rec EP2p

rep ED2p
rep

Tokina 11-16 (11) - 0.472 -0.594 0.397 -0.587
Sigma 8-16 (8) 0.001 -0.011 −1.8×10−5 -0.001 -0.005
Sigma 8-16 (12) -0.026 -0.037 0.034 -0.032 0.031
Nikkor 14-24 (14) 0.069 0.077 -0.075 0.078 -0.079
Nikkor 14-24 (18) 0.019 0.034 -0.033 0.033 -0.033
Nikkor 17-35 (17) 0.105 0.128 -0.127 0.132 -0.126
Nikkor 24-70 (24) 0.043 0.060 -0.061 0.058 -0.059

TABLE 2
Value for parameter k̃1 of the lens distortion models in a variety of
commercial lens. The value is normalized in center-corner units.

k̃2

Lens EIma
rec EP2p

rec ED2p
rec EP2p

rep ED2p
rep

Tokina 11-16 (11) - 0.992 -0.158 1.129 -0.172
Sigma 8-16 (8) 0.051 0.106 -0.090 0.096 -0.084
Sigma 8-16 (12) 0.032 0.065 -0.062 0.059 -0.058
Nikkor 14-24 (14) 0.002 0.012 -0.008 0.012 -0.004
Nikkor 14-24 (18) 0.007 0.002 0.001 0.003 -0.002
Nikkor 17-35 (17) -0.041 -0.053 0.057 -0.057 0.057
Nikkor 24-70 (24) 0.006 0.004 -0.0002 0.007 -0.003

TABLE 3
Value for parameter k̃2 of the lens distortion models in a variety of
commercial lenses. The value is normalized in center-corner units.
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ED2p
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Lens NIKKOR 17−35mm (focal length fixed to 17mm)

EIma
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EP2p
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ED2p
rep

Fig. 4. Plot of the function L(r) in normalized coordinates, obtained
using different methods, for 2 commercial lens.

scene covered by the camera, and the dark lines represent
the projection of such lines onto the image.

In fig. 6, 7 and 8, we illustrate the lens distortion profile
for a variety of lenses. For each lens configuration, we show
a picture acquired with the lens as well as the lens distortion
profile obtained using this picture.

Assuming, as usual, that the lens distortion model is
a camera internal parameter independent of the camera
location in the space we can apply the estimated distortion
model using the calibration pattern to correct the distortion
of any image taken with the same camera configuration.

Fig. 5. Illustration of Tokina DX 11-16mm lens distortion profile (with the
focal length fixed to 11) estimated using the method proposed in this
paper and division models. The bright lines represent a lattice of the 3D
scene covered by the camera and the dark lines represent the projection
of such lines onto the image.

(a) (b)

(c) (d)

Fig. 6. Lens distortion model estimation of the lens Sigma DX 8-16 mm
mounted in a Nikon D90 camera. We present the picture taken with the
camera and the obtained lens distortion model profile. In (a)–(b) we fixed
the focal length to 8 and in (c)–(d) we fixed the focal length to 12.

(a) (b)

(c) (d)

Fig. 7. Lens distortion model estimation of the lens Nikkor 14-24 mm
mounted in a Nikon D800 camera. We present the picture taken with
the camera and the obtained lens distortion model profile. In (a)–(b) we
fixed the focal length to 14 and in (c)–(d) we fixed the focal length to 18.
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(a) (b)

(c) (d)

Fig. 8. In (a)–(b) we show the picture and the profile of the lens Nikkor
17-35mm mounted in a Nikon D800 camera with a focal length equal
to 17. In (c)–(d) we show the picture and the profile of the lens Nikkor
24-70mm mounted in a Nikon D800 camera with a focal length equal to
24.

This is illustrated in fig. 9 where present the results of the
lens distortion correction of some photos taken with the
Tokina DX 11-16mm lens (with the focal length fixed to
16mm) using the lens distortion model computed using the
picture of the calibration pattern which is also included in
fig. 9. We point out that the real images showed in fig. 9
contain very few and short visible lines so the lens distortion
estimation methods based on line detection and rectification
are not expected to work properly.

5 CONCLUSIONS

The main contribution of this paper is a new technique
based on the minimization of a line reprojection error to
compute simultaneously the lens distortion model and the
homography which project a calibration pattern in the cam-
era sensor. The main advantage of this method is that the
information we can extract from the image about the lines
is more robust and accurate than the one we obtain using
corner detectors specially in the case the lens shows a high
level of distortion. We design a fully automatic algorithm
to estimate the lens distortion model and the homography
and we present some experiments which shows that the
estimated lens distortion model outperforms the results
obtained with the usual methods based on line rectification.
The main limitation of the usual line rectification techniques
is that they are not based on a metric measure and they
do not exploit the knowledge we have about the line loca-
tion in the calibration pattern. The method we propose is
more accurate because it is based on the minimization of a
metric distance measuring the match between the lines in
the calibration pattern and their projection in the camera
sensor. So the proposed method represents a more accurate
alternative to the usual way lens distortion is evaluated in
commercial lenses. We also show how the lens distortion
model estimated using the calibration pattern can also be

Fig. 9. Lens distortion correction using the lens distortion model ob-
tained from the calibration pattern using the proposed method. On the
left we show the original image and on the right the corrected one.

applied to correct the distortion of any image taken with the
same lens.
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