Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/36071
Título: | Estimation of the lens distortion model by minimizing a line reprojection error | Autores/as: | Santana-Cedrés, Daniel Gomez, Luis Alemán-Flores, Miguel Salgado de la Nuez, Agustín Javier Esclarín, Julio Mazorra, Luis Alvarez, Luis |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes 120602 Ecuaciones diferenciales 120601 Construcción de algoritmos 120326 Simulación |
Palabras clave: | Camera sensor Lens distortion Homography estimation Reprojection error |
Fecha de publicación: | 2017 | Publicación seriada: | IEEE Sensors Journal | Resumen: | Most techniques for camera calibration that use planar calibration patterns require the computation of a lens distortion model and a homography. Both are simultaneously refined using a bundle adjustment that minimizes the reprojection error of a collection of points when projected from the scene onto the camera sensor. These points are usually the corners of the rectangles of a calibration pattern. However, if the lens shows a significant distortion, the location and matching of the corners can be difficult and inaccurate. To cope with this problem, instead of point correspondences, we propose to use line correspondences to compute the reprojection error. We have designed a fully automatic algorithm to estimate the lens distortion model and the homography by computing line correspondences and minimizing the line reprojection error. In the experimental setup, we focus on the analysis of the quality of the obtained lens distortion model. We present some experiments that show that the proposed method outperforms the results obtained by standard methods to compute lens distortion models based on line rectification. | URI: | http://hdl.handle.net/10553/36071 | ISSN: | 1530-437X | DOI: | 10.1109/JSEN.2017.2677475 | Fuente: | IEEE Sensors Journal[ISSN 1530-437X],v. 17 (2677475), p. 2848-2855 |
Colección: | Artículos |
Citas SCOPUSTM
13
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
9
actualizado el 17-nov-2024
Visitas
175
actualizado el 27-jul-2024
Descargas
76
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.