Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/33732
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cabrera Santana, Pedro Jesús | en_US |
dc.contributor.author | Carta González, José Antonio | en_US |
dc.contributor.author | González Hernández, Jaime | en_US |
dc.contributor.author | Melián, Gustavo | en_US |
dc.date.accessioned | 2018-03-13T09:43:50Z | - |
dc.date.available | 2018-03-13T09:43:50Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.issn | 0011-9164 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/33732 | - |
dc.description.abstract | In this paper, two studies are carried out related to the performance simulation and analysis of a wind-powered seawater reverse osmosis (SWRO) desalination plant prototype installed on the island of Gran Canaria (Spain). Three machine learning techniques (artificial neural networks, support vector machines and random forests) were implemented to predict the performance (pressure, feed flow rate and permeate flow rate, and permeate conductivity) of the SWRO desalination plant. Subsequently, plant operation was analysed in two different operating modes: a) constant pressure and flow rate through connection with a wind-battery microgrid, b) variable pressure and flow rate as a function of the power supplied by a stand-alone wind microgrid without energy storage. The paper supports two main outcomes. First, support vector machines and random forests are significantly (5% significance level) better predictors of the plant's performances than neural networks. Second, over one year, the operating mode that considers variable pressure and flow rate operates more continuously (higher operating frequencies and lower stop/start frequencies) than the constant pressure and flow rate alternative; however 1.2 times less permeate with 1.08 higher conductivity is produced on an annual basis. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Desalination (Amsterdam) | en_US |
dc.source | Desalination [ISSN 0011-9164], v. 435, p. 77-96 | en_US |
dc.subject | 3322 Tecnología energética | en_US |
dc.subject | 332202 Generación de energía | en_US |
dc.subject | 3311 tecnología de la instrumentación | en_US |
dc.subject | 331101 Tecnología de la automatización | en_US |
dc.subject.other | Desalination | en_US |
dc.subject.other | Machine learning | en_US |
dc.subject.other | Microgrid | en_US |
dc.subject.other | Sea water reverse osmosis | en_US |
dc.subject.other | Wind energy | en_US |
dc.title | Wind-driven SWRO desalination prototype with and without batteries: A performance simulation using machine learning models | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.desal.2017.11.044 | en_US |
dc.identifier.scopus | 85037055578 | - |
dc.identifier.isi | 000429395300008 | - |
dc.identifier.url | http://api.elsevier.com/content/abstract/scopus_id/85037055578 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.authorscopusid | 56331565000 | - |
dc.contributor.authorscopusid | 7003652043 | - |
dc.contributor.authorscopusid | 7404493946 | - |
dc.contributor.authorscopusid | 54953765300 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.source.type | ip | en |
dc.type2 | Artículo | en_US |
dc.identifier.wos | WOS:000429395300008 | - |
dc.contributor.daisngid | 2885442 | - |
dc.contributor.daisngid | 1198474 | - |
dc.contributor.daisngid | 6322397 | - |
dc.contributor.daisngid | 9192346 | - |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Cabrera, P | - |
dc.contributor.wosstandard | WOS:Carta, JA | - |
dc.contributor.wosstandard | WOS:Gonzalez, J | - |
dc.contributor.wosstandard | WOS:Melian, G | - |
dc.date.coverdate | Junio 2018 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.description.sjr | 1,689 | |
dc.description.jcr | 6,035 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR Group for the Research on Renewable Energy Systems | - |
crisitem.author.dept | Departamento de Ingeniería Mecánica | - |
crisitem.author.dept | GIR Group for the Research on Renewable Energy Systems | - |
crisitem.author.dept | Departamento de Ingeniería Mecánica | - |
crisitem.author.dept | GIR Group for the Research on Renewable Energy Systems | - |
crisitem.author.orcid | 0000-0001-9707-6375 | - |
crisitem.author.orcid | 0000-0003-1379-0075 | - |
crisitem.author.orcid | 0009-0004-0826-0816 | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.fullName | Cabrera Santana, Pedro Jesús | - |
crisitem.author.fullName | Carta González, José Antonio | - |
crisitem.author.fullName | González Hernández,Jaime | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.