Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/33732
Título: Wind-driven SWRO desalination prototype with and without batteries: A performance simulation using machine learning models
Autores/as: Cabrera Santana, Pedro Jesús 
Carta González, José Antonio 
González Hernández, Jaime 
Melián, Gustavo
Clasificación UNESCO: 3322 Tecnología energética
332202 Generación de energía
3311 tecnología de la instrumentación
331101 Tecnología de la automatización
Palabras clave: Desalination
Machine learning
Microgrid
Sea water reverse osmosis
Wind energy
Fecha de publicación: 2018
Publicación seriada: Desalination (Amsterdam) 
Resumen: In this paper, two studies are carried out related to the performance simulation and analysis of a wind-powered seawater reverse osmosis (SWRO) desalination plant prototype installed on the island of Gran Canaria (Spain). Three machine learning techniques (artificial neural networks, support vector machines and random forests) were implemented to predict the performance (pressure, feed flow rate and permeate flow rate, and permeate conductivity) of the SWRO desalination plant. Subsequently, plant operation was analysed in two different operating modes: a) constant pressure and flow rate through connection with a wind-battery microgrid, b) variable pressure and flow rate as a function of the power supplied by a stand-alone wind microgrid without energy storage. The paper supports two main outcomes. First, support vector machines and random forests are significantly (5% significance level) better predictors of the plant's performances than neural networks. Second, over one year, the operating mode that considers variable pressure and flow rate operates more continuously (higher operating frequencies and lower stop/start frequencies) than the constant pressure and flow rate alternative; however 1.2 times less permeate with 1.08 higher conductivity is produced on an annual basis.
URI: http://hdl.handle.net/10553/33732
ISSN: 0011-9164
DOI: 10.1016/j.desal.2017.11.044
Fuente: Desalination [ISSN 0011-9164], v. 435, p. 77-96
URL: http://api.elsevier.com/content/abstract/scopus_id/85037055578
Colección:Artículos
Vista completa

Citas SCOPUSTM   

70
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

58
actualizado el 17-nov-2024

Visitas

126
actualizado el 21-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.