Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/33732
Título: | Wind-driven SWRO desalination prototype with and without batteries: A performance simulation using machine learning models | Autores/as: | Cabrera Santana, Pedro Jesús Carta González, José Antonio González Hernández, Jaime Melián, Gustavo |
Clasificación UNESCO: | 3322 Tecnología energética 332202 Generación de energía 3311 tecnología de la instrumentación 331101 Tecnología de la automatización |
Palabras clave: | Desalination Machine learning Microgrid Sea water reverse osmosis Wind energy |
Fecha de publicación: | 2018 | Publicación seriada: | Desalination (Amsterdam) | Resumen: | In this paper, two studies are carried out related to the performance simulation and analysis of a wind-powered seawater reverse osmosis (SWRO) desalination plant prototype installed on the island of Gran Canaria (Spain). Three machine learning techniques (artificial neural networks, support vector machines and random forests) were implemented to predict the performance (pressure, feed flow rate and permeate flow rate, and permeate conductivity) of the SWRO desalination plant. Subsequently, plant operation was analysed in two different operating modes: a) constant pressure and flow rate through connection with a wind-battery microgrid, b) variable pressure and flow rate as a function of the power supplied by a stand-alone wind microgrid without energy storage. The paper supports two main outcomes. First, support vector machines and random forests are significantly (5% significance level) better predictors of the plant's performances than neural networks. Second, over one year, the operating mode that considers variable pressure and flow rate operates more continuously (higher operating frequencies and lower stop/start frequencies) than the constant pressure and flow rate alternative; however 1.2 times less permeate with 1.08 higher conductivity is produced on an annual basis. | URI: | http://hdl.handle.net/10553/33732 | ISSN: | 0011-9164 | DOI: | 10.1016/j.desal.2017.11.044 | Fuente: | Desalination [ISSN 0011-9164], v. 435, p. 77-96 | URL: | http://api.elsevier.com/content/abstract/scopus_id/85037055578 |
Colección: | Artículos |
Citas SCOPUSTM
70
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
58
actualizado el 17-nov-2024
Visitas
126
actualizado el 21-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.