Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/33732
Campo DC Valoridioma
dc.contributor.authorCabrera Santana, Pedro Jesúsen_US
dc.contributor.authorCarta González, José Antonioen_US
dc.contributor.authorGonzález Hernández, Jaimeen_US
dc.contributor.authorMelián, Gustavoen_US
dc.date.accessioned2018-03-13T09:43:50Z-
dc.date.available2018-03-13T09:43:50Z-
dc.date.issued2018en_US
dc.identifier.issn0011-9164en_US
dc.identifier.urihttp://hdl.handle.net/10553/33732-
dc.description.abstractIn this paper, two studies are carried out related to the performance simulation and analysis of a wind-powered seawater reverse osmosis (SWRO) desalination plant prototype installed on the island of Gran Canaria (Spain). Three machine learning techniques (artificial neural networks, support vector machines and random forests) were implemented to predict the performance (pressure, feed flow rate and permeate flow rate, and permeate conductivity) of the SWRO desalination plant. Subsequently, plant operation was analysed in two different operating modes: a) constant pressure and flow rate through connection with a wind-battery microgrid, b) variable pressure and flow rate as a function of the power supplied by a stand-alone wind microgrid without energy storage. The paper supports two main outcomes. First, support vector machines and random forests are significantly (5% significance level) better predictors of the plant's performances than neural networks. Second, over one year, the operating mode that considers variable pressure and flow rate operates more continuously (higher operating frequencies and lower stop/start frequencies) than the constant pressure and flow rate alternative; however 1.2 times less permeate with 1.08 higher conductivity is produced on an annual basis.en_US
dc.languageengen_US
dc.relation.ispartofDesalination (Amsterdam)en_US
dc.sourceDesalination [ISSN 0011-9164], v. 435, p. 77-96en_US
dc.subject3322 Tecnología energéticaen_US
dc.subject332202 Generación de energíaen_US
dc.subject3311 tecnología de la instrumentaciónen_US
dc.subject331101 Tecnología de la automatizaciónen_US
dc.subject.otherDesalinationen_US
dc.subject.otherMachine learningen_US
dc.subject.otherMicrogriden_US
dc.subject.otherSea water reverse osmosisen_US
dc.subject.otherWind energyen_US
dc.titleWind-driven SWRO desalination prototype with and without batteries: A performance simulation using machine learning modelsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.desal.2017.11.044en_US
dc.identifier.scopus85037055578-
dc.identifier.isi000429395300008-
dc.identifier.urlhttp://api.elsevier.com/content/abstract/scopus_id/85037055578-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid56331565000-
dc.contributor.authorscopusid7003652043-
dc.contributor.authorscopusid7404493946-
dc.contributor.authorscopusid54953765300-
dc.investigacionIngeniería y Arquitecturaen_US
dc.source.typeipen
dc.type2Artículoen_US
dc.identifier.wosWOS:000429395300008-
dc.contributor.daisngid2885442-
dc.contributor.daisngid1198474-
dc.contributor.daisngid6322397-
dc.contributor.daisngid9192346-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Cabrera, P-
dc.contributor.wosstandardWOS:Carta, JA-
dc.contributor.wosstandardWOS:Gonzalez, J-
dc.contributor.wosstandardWOS:Melian, G-
dc.date.coverdateJunio 2018en_US
dc.identifier.ulpgcen_US
dc.description.sjr1,689
dc.description.jcr6,035
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.orcid0000-0001-9707-6375-
crisitem.author.orcid0000-0003-1379-0075-
crisitem.author.orcid0009-0004-0826-0816-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameCabrera Santana, Pedro Jesús-
crisitem.author.fullNameCarta González, José Antonio-
crisitem.author.fullNameGonzález Hernández,Jaime-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.