Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/16837
Título: | Construction of polynomial spline spaces over quadtree and octree T-meshes | Autores/as: | Brovka, M. López, J. I. Escobar, J. M. Cascón Barbero, José Manuel Montenegro, R. |
Clasificación UNESCO: | 1206 Análisis numérico 1204 Geometría |
Palabras clave: | Isogeometric analysis Multivariate splines Local refinement T-mesh Nested spaces |
Fecha de publicación: | 2014 | Proyectos: | Avances en Simulación de Campos de Viento y Radiación Solar. | Publicación seriada: | Procedia Engineering | Conferencia: | 23rd International Meshing Roundtable (IMR) 23rd International Meshing Roundtable, IMR 2014 |
Resumen: | We present a new strategy for constructing tensor product spline spaces over quadtree and octree T-meshes. The proposed technique includes some simple rules for inferring local knot vectors to define spline blending functions. These rules allow to obtain for a given T-mesh a set of cubic spline functions that span a space with nice properties: it can reproduce cubic polynomials, the functions are C2-continuous, linearly independent, and spaces spanned by nested T-meshes are also nested. In order to span spaces with these properties applying the proposed rules, the T-mesh should fulfill the only requirement of being a 0-balanced quadtree or octree. | URI: | http://hdl.handle.net/10553/16837 | ISSN: | 1877-7058 | DOI: | 10.1016/j.proeng.2014.10.370 | Fuente: | Procedia engineering [ISSN 1877-7058], v. 82, p. 21-33 | Derechos: | by-nc-nd |
Colección: | Actas de congresos |
Citas SCOPUSTM
3
actualizado el 22-dic-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 22-dic-2024
Visitas
92
actualizado el 18-may-2024
Descargas
168
actualizado el 18-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.