

Construction of polynomial spline spaces over quadtree and octree T-meshes

M. Brovka⁽¹⁾, J.I. López⁽¹⁾, J.M. Escobar⁽¹⁾, J.M. Cascón⁽²⁾ and R. Montenegro^{(1)*}

⁽¹⁾ University Institute SIANI, University of Las Palmas de Gran Canaria, Spain

⁽²⁾ Department of Economics and History of Economics, University of Salamanca, Spain

23rd International Meshing Roundtable (IMR23)

October 12–15, 2014, London, UK

MINECO y FEDER Project: CGL2011-29396-C03-00 CONACYT-SENER Project, Fondo Sectorial, contract: 163723

http://www.dca.iusiani.ulpgc.es/proyecto2012-2014

Motivation and summary of our previous works

- T-spline parameterization of 2D and 3D geometries
- Application to isogeometric modeling and analysis

D Polynomial spline spaces over quadtree and octree T-meshes

- The main three steps of the new technique in 2D and 3D
- Straightforward implementation in 2D and 3D
- Application to isogeometric modeling and analysis

Comments and future research

T-spline Parameterization

For a given T-mesh (0-balanced quadtree/octree)

Objective question: Is it possible to define cubic polynomial blending functions?

Input data: Boundary representation of the object Objective: Construction of a high quality T-spline parameterization

T-mesh

T-spline mesh

Physical space

T-spline Basis Functions in 2-D

Example of a bivariate cubic basis function on a T-mesh

T.W. Sederberg (rational blending functions with local support)

Knots associated to anchor t_a (obtaining by traversing T-mesh edges): $\Xi^1_{\alpha} = \left\{ \xi^1_1, \xi^1_2, \xi^1_4, \xi^1_5, \xi^1_6 \right\} \quad \Xi^2_{\alpha} = \left\{ \xi^2_2, \xi^2_3, \xi^2_4, \xi^2_5, \xi^2_6 \right\}$

Bivariate Cubic T-spline Basis Function

 $B_{\alpha}(\boldsymbol{\xi}^{1},\boldsymbol{\xi}^{2}) = N_{\alpha}^{1}(\boldsymbol{\xi}^{1}) N_{\alpha}^{2}(\boldsymbol{\xi}^{2})$

Rational blending function

$$R_lpha(oldsymbol{\xi}) = rac{w_lpha B_lpha(oldsymbol{\xi})}{\sum_{eta \in A} w_eta B_eta(oldsymbol{\xi})}$$

Simultaneous Untangling and Smoothing of T-meshes

T-mesh transformation along the SUS process: Example

Parameter space

Physical space

Simultaneous Untangling and Smoothing of T-meshes

T-mesh transformation along the SUS process: Video

Local Nested Adaptive Refinement

Numerical solution of a Poisson problem Concentrate source in relation to the initial mesh size

$$-\bigtriangleup u = f$$
 in Ω ,
 $u = g$ on $\partial \Omega$.

Exact solution:

$$u(x,y) = \exp\left[-10^3((x-0.6)^2 + (y-0.35)^2)\right]$$

Residual-type error indicator:

$$\eta(\Omega_e)^2 = \|h(f + \Delta u_h)\|_{0,\Omega_e}^2 = \int_{\Omega_e} h^2 (f + \Delta u_h)^2 \,\mathrm{d}\Omega$$

Local Nested Adaptive Refinement

Numerical solution of a Poisson problem

Error indicator : $\eta \left(\Omega_{e}\right)^{2} = \int_{\Omega_{e}} h^{2} \left(f + \Delta u_{h}\right)^{2} d\Omega$

(g) Initial solution

(h) 1-st refinement

(i) 14-th refinement

Polynomial spline spaces over any quadtree and octree T-meshes

A new strategy for constructing tensor product cubic spline spaces over arbitrary quadtree (2D) and octree (3D) T-meshes

□ For a given T-mesh, it allows to obtain a set of cubic spline functions that span a space with nice properties: C² continuous, nested spaces, linear independence

Simple rules for inferring local knot vectors to define spline blending functions

Straightforward implementation in 2D and 3D

Strategy for defining polynomial spline spaces General Scheme

Three main steps

1. Mesh pretreatment: 0-balancing

2. Inferring local knot vectors

3. Modification of local knot vectors

Step 1 - Mesh pretreatment

0-balancing

- Only one hanging node (T-junction) per edge
- Any node is shared by cells that at most belong to two consecutive levels

Standard procedure

(refinement)

Unbalanced quadtree

0-balanced quadtree

Step 2 - Inferring local knot vectors

Inferring local knot vectors

- Blending functions are associated only to regular nodes
- Local knot vectors are inferred by traversing T-mesh edges
- Hanging nodes are skipped when "walking" along its surrounding edge

Original T-spline (Sederberg)

New strategy

Step 3 - Modification of local knot vectors

Support of the blending function $\,N_{lpha}\,$ associated to the anchor $lpha\,$

Step 3 - Modification of local knot vectors

Modification of local knot vectors

Knot vectors of each blending function N_{α} have to fulfill two conditions:

Condition 1: Local knot vectors of the d-variate function N_{lpha} verify:

$$\Delta_1^j \ge \Delta_2^j = \Delta_3^j \leqslant \Delta_4^j, \quad j = 1, ..., d$$

Condition 2: The frame of the function support should be situated over the mesh skeleton:

 $\operatorname{frm}(\operatorname{supp} N_{\alpha}) \in \operatorname{skt}(T)$

Simple extension rule: If any condition is not verified, then some Δ_i^j are duplicated

Strategy for defining polynomial spline spaces Step 3 - Modification of local knot vectors (Examples)

Step 3 - Modification of local knot vectors (more examples)

(a) Initial supports that satisfy both conditions and should not be modified.

(c) Condition 1 is not satisfied because $\Delta_2^{\xi} < \Delta_3^{\xi}$, so $\xi_1^* \leftarrow \xi_3 - 2h$ and $\xi_2^* \leftarrow \xi_3 - h.$

(b) Condition 1 is not satisfied because $\Delta_1^{\xi} < \Delta_2^{\xi}$, so $\xi_1^* \leftarrow \xi_3 - 2h$.

(d) Condition 1 is not satisfied because $\Delta_1^{\eta} < \Delta_2^{\eta}$, so $\eta_1^* \leftarrow \eta_3 - 2h$.

Step 3 - Modification of local knot vectors (more examples)

(e) Condition 1 is not satisfied because $\Delta_2^{\xi} < \Delta_3^{\xi}$ and $\Delta_2^{\eta} < \Delta_3^{\eta}$, so $\xi_2^* \leftarrow \xi_3 - h$, $\eta_2^* \leftarrow \eta_3 - h$ and $\eta_1^* \leftarrow \eta_3 - 2h$.

(g) Condition 2 is not satisfied because $V_{1,1}$ and $V_{1,5} \notin skt(T)$, so $\xi_1^* \leftarrow \xi_3 - 3h$, $\eta_1^* \leftarrow \eta_3 - 3h$ and $\eta_5^* \leftarrow \eta_3 + 3h$.

(f) Condition 2 is not satisfied because $V_{5,5} \notin skt(T)$, so $\xi_5^* \leftarrow \xi_3 + 3h$ and $\eta_5^* \leftarrow \eta_3 + 3h$.

(h) Condition 1 and 2 are not satisfied because $\Delta_2^{\xi} > \Delta_3^{\xi}$, $\Delta_2^{\eta} > \Delta_3^{\eta}$ and $V_{1,1} \notin skt(T)$, so $\xi_4^* \leftarrow \xi_3 + h$, $\xi_5^* \leftarrow \xi_3 + 2h$, $\eta_4^* \leftarrow \eta_3 + h$, $\eta_5^* \leftarrow \eta_3 + 2h$, $\xi_1^* \leftarrow \xi_3 - 3h$, $\eta_1^* \leftarrow \eta_3 - 3h$.

Straightforward implementation in 3D

Some remarks

□ Function supports can be constructed separately (in parallel)

□ For a given T-mesh, the resulting spline space is unique

Good quality parameterization for application of IGA

Comparison of rational T-spline parameterization with the new strategy

T-spline parameterization, Sederberg (rational blending functions) Spline parameterization with the new strategy (polynomial blending functions)

Good quality parameterization for application of IGA

Comparison of rational T-spline parameterization with the new strategy

Isogeometric analysis on 2D domain

Poisson problem with Dirichlet boundary condition

$$-\triangle u = f \qquad \text{in } \Omega,$$
$$u = g \qquad \text{on } \partial\Omega.$$

Analytical solution:

$$u(x,y) = \exp\left(-7\sqrt{(x-0.5)^2 + (y-0.5)^2}\right) + \exp\left(-7\sqrt{(x-0.25)^2 + (y-0.25)^2}\right) + \exp\left(-7\sqrt{(x-0.75)^2 + (y-0.75)^2}\right).$$

Residual-type error indicator:

$$\eta(\Omega_e)^2 = \int_{\Omega_e} h^2 \left(f + \Delta u_h \right)^2 \, \mathrm{d}\Omega$$

Monotonous convergence: L²-norm and H¹-seminorm error

Isogeometric analysis on 2D complex domain

Poisson problem with Dirichlet boundary condition on a puzzle piece

$$-\triangle u = f \qquad \text{in } \Omega,$$
$$u = g \qquad \text{on } \partial \Omega.$$

• Analytical solution: Steep wave front given by

$$u(r) = \arctan(\alpha(r - r_0)),$$
 where $r = \sqrt{(x - x_c)^2 + (y - y_c)^2}$,
 $(x_c, y_c) = (0, 0), \alpha = 200 \text{ and } r_0 = 0.6$

• Adaptive strategy: Residual-type error indicator:

$$\eta(\Omega_e)^2 = \int_{\Omega_e} h^2 \left(f + \Delta u_h\right)^2 \, \mathrm{d}\Omega$$

Isogeometric analysis for 2D Poisson problem

Initial adapted T-mesh and parameterization of the puzzle (Meccano method) Mean ratio Jacobian as a quality metric

Adaptive T-mesh after 13 refinement steps

Numerical solution

Monotonous convergence: L²-norm and H¹-seminorm error

Isogeometric analysis for 3D Poisson problem

Adaptive T-spline parameterization of a sphere portion

Analytical solution:

Numerical solution

A section of the parametric and physical discretization

Numerical solution on a section of the parametric and physical domain

Monotonous convergence: L²-norm and H¹-seminorm error

Conclusions

- We have developed a new strategy for constructing tensor product cubic spline spaces over arbitrary quadtree (2D) and octree (3D) meshes
- Easy implementation in 2D and 3D

Future Works

The proof of the nestedness of the spaces and their linear independence is in preparation

Comment about the nestedness proof

Three basic types of a blending function of level K verifying conditions 1 and 2

Function Support of level K covers 6 (Type I), 9 (Type II) or 4 (Type III) cells of level K-1

Construction of polynomial spline spaces over quadtree and octree T-meshes

M. Brovka⁽¹⁾, J.I. López⁽¹⁾, J.M. Escobar⁽¹⁾, J.M. Cascón⁽²⁾ and R. Montenegro^{(1)*}

⁽¹⁾ University Institute SIANI, University of Las Palmas de Gran Canaria, Spain

⁽²⁾ Department of Economics and History of Economics, University of Salamanca, Spain

23rd International Meshing Roundtable (IMR23)

October 12–15, 2014, London, UK

MINECO y FEDER Project: CGL2011-29396-C03-00 CONACYT-SENER Project, Fondo Sectorial, contract: 163723

http://www.dca.iusiani.ulpgc.es/proyecto2012-2014

Step 1: Input boundary (image, polyline, curve, etc.) and boundary mapping

Select four points (A, B, C, D) of the input boundary

Boundary parameterization via chord-length

Step 2: Coarse quadrilateral mesh of the meccano (parameter space)

Step 3: Refine mesh with quadtree subdivisions to approach the boundary

11	11		Н	H		H	***	۳ť	***	Ħ	H			H	""		-	""		111	1	Ľ				H	Ħ	H	H	11	
									T																		<u> </u>	· ·			
									1																						
		_		_			-		· ·			<u> </u>			_				_	<u> </u>							· ·		-		
										I 1												I .						I .			
										I 1												I 1						I .			
44																												I .			
																												I .			
μ.,	-	_	_																									⊢	_		
																												I .			
	-																											I .			
H																												I .			
н			_		_	_		-			_		_		_				_	-	_		_			_			_		
+																												I I			
																												I I			
																												I I			
																												I I			
																												I I			\square
																												I .			
			_																									⊢	_		
																												I .			
	-																											I .			
																												I .			
			_		_	_		-	_	_	_	-	_	_	_		_	_	_		_	_	_		_	_	_		_		
																												I .			
																												I .			
																												I .			
																												I .			
-			_																				_					L			
4																												I I			
Ц.																												I I			
																												I I			
			_																									⊢	_		
																												I I			
																												I I			
																												I I			
			_		_																		_						_		
																												I I			
																												I I			
																												I I			
4			_		_	_		-		-			_	_				_		—		_	_			_		-			
+						I				1												I I						I I			
+						I				1												I I						I I			
H						I				1												I I						I I			
H		-	_	-	-	-	—	-	-	+																-	—				
H						I			1	1																	1				
H	H	┝┯╋	-	\vdash	-	-	H	H	+-	╈	+++	H				\vdash		H		\mathbf{H}			H	H		\vdash	+				
			-++	I		1	H	ш		+++	tata							HH	HH	HH	+					⊢⊢	++-	htt	htt		

Step 4: Move the meccano boundary nodes to the object boundary

Step 5: Inner node relocation with Coons patch to facilitate the optimization

SIANI

Step 6: Simultaneous Untangling and Smoothing (SUS) of the T-mesh

Step 7: T-spline representation of the spot

Mean Ratio Jacobian $J_r(\xi)$ of Parametric Transformation

SIANI

A quality metric of the T-spline mapping at any point P_0

Good quality parameterization for application of IGA

Mean ratio Jacobian as a quality metric

Good quality parameterization for application of IGA

Comparison of rational T-spline parameterization with the new strategy Oscillation of mean ratio Jacobian on each cell

Representation in increasing order in the 844 cells with 64 quadrature points per cell

T-spline Parameterization

Determination of control points by imposing interpolation conditions

INPUT DATA: Surface Triangulation http://www.cyberware.com/

Application in Igea: Poisson problem with a central source

Igea: T-spline of Numerical Solution

Igea: T-spline of Numerical Solution

Error indicator :
$$\eta \left(\Omega_e\right)^2 = \int_{\Omega_e} h^2 \left(f + \Delta u_h\right)^2 d\Omega$$

Igea: T-spline of Numerical Solution

Error indicator :
$$\eta \left(\Omega_e\right)^2 = \int_{\Omega_e} h^2 \left(f + \Delta u_h\right)^2 d\Omega$$

