Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/16837
Title: Construction of polynomial spline spaces over quadtree and octree T-meshes
Authors: Brovka, M. 
López, J. I. 
Escobar, J. M. 
Cascón Barbero, José Manuel
Montenegro, R. 
UNESCO Clasification: 1206 Análisis numérico
1204 Geometría
Keywords: Isogeometric analysis
Multivariate splines
Local refinement
T-mesh
Nested spaces
Issue Date: 2014
Project: Avances en Simulación de Campos de Viento y Radiación Solar. 
Journal: Procedia Engineering 
Conference: 23rd International Meshing Roundtable (IMR) 
23rd International Meshing Roundtable, IMR 2014 
Abstract: We present a new strategy for constructing tensor product spline spaces over quadtree and octree T-meshes. The proposed technique includes some simple rules for inferring local knot vectors to define spline blending functions. These rules allow to obtain for a given T-mesh a set of cubic spline functions that span a space with nice properties: it can reproduce cubic polynomials, the functions are C2-continuous, linearly independent, and spaces spanned by nested T-meshes are also nested. In order to span spaces with these properties applying the proposed rules, the T-mesh should fulfill the only requirement of being a 0-balanced quadtree or octree.
URI: http://hdl.handle.net/10553/16837
ISSN: 1877-7058
DOI: 10.1016/j.proeng.2014.10.370
Source: Procedia engineering [ISSN 1877-7058], v. 82, p. 21-33
Rights: by-nc-nd
Appears in Collections:Actas de congresos
Thumbnail
Adobe PDF (12,2 MB)
Thumbnail
Adobe PDF (5,43 MB)
Show full item record

SCOPUSTM   
Citations

3
checked on Feb 28, 2021

WEB OF SCIENCETM
Citations

2
checked on Feb 28, 2021

Page view(s)

26
checked on Mar 1, 2021

Download(s)

47
checked on Mar 1, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.